File size: 2,110 Bytes
957adf6
a3f7cf5
 
957adf6
 
a3f7cf5
 
 
 
 
 
 
 
 
 
 
 
957adf6
a3f7cf5
 
 
 
 
 
 
 
 
957adf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f7cf5
957adf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f7cf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
#from huggingface_hub import InferenceClient
from smolagents import CodeAgent, Tool


#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Initialize the agent
agent = CodeAgent(
    tools=[search_kb_tool, search_web_tool, format_response_tool],
    system_prompt="""
You are a Basic Troubleshooting Assistant.
Understand the user's problem, attempt to resolve it using the knowledge base.
If the knowledge base is insufficient, perform a web search.
Provide clear, step-by-step instructions and confirm each step's outcome.
"""
)

# Run the agent
while True:
    user_input = input("User: ")
    if user_input.lower() in ["exit", "quit"]:
        break
    response = agent.run(user_input)
    print("Agent:", response)
###############################################################
"""def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response



demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()
"""