Manavraj commited on
Commit
f379bec
·
verified ·
1 Parent(s): 8d97866

MCP Server 1st launch

Browse files
Files changed (1) hide show
  1. app.py +61 -62
app.py CHANGED
@@ -1,64 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from duckduckgo_search import DDGS
3
+ #from huggingface_hub import InferenceClient
4
+
5
+ # Simulated knowledge base
6
+ TROUBLESHOOTING_KB = {
7
+ "wifi not working": [
8
+ "Check if your router is turned on.",
9
+ "Restart your router.",
10
+ "Ensure your device is connected to the correct Wi-Fi network.",
11
+ "Try connecting another device to determine if the issue is with your device or the network."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ],
13
+ "computer is slow": [
14
+ "Close unused applications.",
15
+ "Check for viruses using antivirus software.",
16
+ "Restart your computer.",
17
+ "Check for available updates and install them."
18
+ ]
19
+ }
20
+
21
+ # Tool: search_knowledge_base
22
+ def search_knowledge_base(problem: str):
23
+ problem = problem.lower()
24
+ for key in TROUBLESHOOTING_KB:
25
+ if key in problem:
26
+ return TROUBLESHOOTING_KB[key]
27
+ return ["No matching solution found in the knowledge base."]
28
+
29
+ # Tool: search_web
30
+ def search_web(query: str):
31
+ results = []
32
+ with DDGS() as ddgs:
33
+ for r in ddgs.text(query, max_results=3):
34
+ results.append({
35
+ "title": r["title"],
36
+ "body": r["body"],
37
+ "href": r["href"]
38
+ })
39
+ return results
40
+
41
+ # Optional Tool: visit_webpage
42
+ def visit_webpage(url: str):
43
+ return f"Stub for visiting {url}"
44
+
45
+ # Optional Tool: format_response
46
+ def format_response(text: str):
47
+ return f"🛠️ Troubleshooting Steps:\n{text}"
48
+
49
+ # Gradio interface
50
+ with gr.Blocks() as demo:
51
+ gr.Markdown("# 🧠 Troubleshooting MCP Server")
52
+
53
+ with gr.Row():
54
+ kb_input = gr.Textbox(label="Describe your problem")
55
+ kb_output = gr.JSON(label="Knowledge Base Steps")
56
+ gr.Button("Search KB").click(search_knowledge_base, inputs=kb_input, outputs=kb_output)
57
+
58
+ with gr.Row():
59
+ web_input = gr.Textbox(label="Enter search query")
60
+ web_output = gr.JSON(label="Web Search Results")
61
+ gr.Button("Search Web").click(search_web, inputs=web_input, outputs=web_output)
62
+
63
+ demo.launch(mcp_server=True)