Spaces:
Paused
Paused
Update utils/planner.py
Browse files- utils/planner.py +13 -15
utils/planner.py
CHANGED
@@ -1,11 +1,12 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
from dotenv import load_dotenv
|
4 |
from openai import OpenAI
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
8 |
-
from transformers import CLIPTokenizer
|
9 |
|
10 |
# ----------------------------
|
11 |
# π Load Environment & GPT Client
|
@@ -14,17 +15,16 @@ load_dotenv()
|
|
14 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
15 |
|
16 |
# ----------------------------
|
17 |
-
# π§ Load BLIP
|
18 |
# ----------------------------
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
21 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
22 |
-
|
23 |
|
24 |
# ----------------------------
|
25 |
-
# π Log
|
26 |
# ----------------------------
|
27 |
-
|
28 |
LOG_PATH = "logs/prompt_log.jsonl"
|
29 |
os.makedirs(os.path.dirname(LOG_PATH), exist_ok=True)
|
30 |
|
@@ -92,7 +92,7 @@ def generate_prompt_variations_from_scene(scene_plan: dict, base_prompt: str, n:
|
|
92 |
system_msg = f"""
|
93 |
You are a creative prompt variation generator for an AI image generation system.
|
94 |
Given a base user prompt and its structured scene plan, generate {n} diverse image generation prompts.
|
95 |
-
Each prompt
|
96 |
- Be visually rich and descriptive
|
97 |
- Include stylistic or contextual variation
|
98 |
- Reference the same product and environment
|
@@ -117,14 +117,13 @@ Respond ONLY with a JSON array of strings. No explanations.
|
|
117 |
content = response.choices[0].message.content
|
118 |
all_prompts = json.loads(content)
|
119 |
|
120 |
-
# Enforce token limit using CLIP tokenizer
|
121 |
filtered = []
|
122 |
for p in all_prompts:
|
123 |
-
|
124 |
-
if
|
125 |
filtered.append(p)
|
126 |
-
print("π§ Filtered Prompts (<=77 tokens):", filtered)
|
127 |
|
|
|
128 |
return filtered or [base_prompt]
|
129 |
|
130 |
except Exception as e:
|
@@ -140,8 +139,7 @@ def generate_negative_prompt_from_scene(scene_plan: dict) -> str:
|
|
140 |
You are an assistant that generates negative prompts for an image generation model.
|
141 |
Based on the structured scene plan, return a list of things that should NOT appear in the image,
|
142 |
such as incorrect objects, extra limbs, distorted hands, text, watermark, etc.
|
143 |
-
Return a single negative prompt string (comma-separated values).
|
144 |
-
No explanations.
|
145 |
"""
|
146 |
|
147 |
response = client.chat.completions.create(
|
@@ -162,9 +160,8 @@ No explanations.
|
|
162 |
print("β generate_negative_prompt_from_scene() Error:", e)
|
163 |
return "deformed hands, extra limbs, text, watermark, signature"
|
164 |
|
165 |
-
|
166 |
# ----------------------------
|
167 |
-
# π Save Logs
|
168 |
# ----------------------------
|
169 |
def save_generation_log(caption, scene_plan, prompts, negative_prompt):
|
170 |
log = {
|
@@ -175,3 +172,4 @@ def save_generation_log(caption, scene_plan, prompts, negative_prompt):
|
|
175 |
}
|
176 |
with open(LOG_PATH, "a") as f:
|
177 |
f.write(json.dumps(log, indent=2) + "\n")
|
|
|
|
1 |
+
# utils/planner.py
|
2 |
+
|
3 |
import os
|
4 |
import json
|
5 |
from dotenv import load_dotenv
|
6 |
from openai import OpenAI
|
7 |
from PIL import Image
|
8 |
import torch
|
9 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, CLIPTokenizer
|
|
|
10 |
|
11 |
# ----------------------------
|
12 |
# π Load Environment & GPT Client
|
|
|
15 |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
16 |
|
17 |
# ----------------------------
|
18 |
+
# π§ Load BLIP & CLIP Tokenizer
|
19 |
# ----------------------------
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
22 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
23 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
|
25 |
# ----------------------------
|
26 |
+
# π Log Path
|
27 |
# ----------------------------
|
|
|
28 |
LOG_PATH = "logs/prompt_log.jsonl"
|
29 |
os.makedirs(os.path.dirname(LOG_PATH), exist_ok=True)
|
30 |
|
|
|
92 |
system_msg = f"""
|
93 |
You are a creative prompt variation generator for an AI image generation system.
|
94 |
Given a base user prompt and its structured scene plan, generate {n} diverse image generation prompts.
|
95 |
+
Each prompt must:
|
96 |
- Be visually rich and descriptive
|
97 |
- Include stylistic or contextual variation
|
98 |
- Reference the same product and environment
|
|
|
117 |
content = response.choices[0].message.content
|
118 |
all_prompts = json.loads(content)
|
119 |
|
|
|
120 |
filtered = []
|
121 |
for p in all_prompts:
|
122 |
+
token_count = len(clip_tokenizer(p)["input_ids"])
|
123 |
+
if token_count <= 77:
|
124 |
filtered.append(p)
|
|
|
125 |
|
126 |
+
print("π§ Filtered Prompts (<=77 tokens):", filtered)
|
127 |
return filtered or [base_prompt]
|
128 |
|
129 |
except Exception as e:
|
|
|
139 |
You are an assistant that generates negative prompts for an image generation model.
|
140 |
Based on the structured scene plan, return a list of things that should NOT appear in the image,
|
141 |
such as incorrect objects, extra limbs, distorted hands, text, watermark, etc.
|
142 |
+
Return a single negative prompt string (comma-separated values). No explanations.
|
|
|
143 |
"""
|
144 |
|
145 |
response = client.chat.completions.create(
|
|
|
160 |
print("β generate_negative_prompt_from_scene() Error:", e)
|
161 |
return "deformed hands, extra limbs, text, watermark, signature"
|
162 |
|
|
|
163 |
# ----------------------------
|
164 |
+
# π Save Logs
|
165 |
# ----------------------------
|
166 |
def save_generation_log(caption, scene_plan, prompts, negative_prompt):
|
167 |
log = {
|
|
|
172 |
}
|
173 |
with open(LOG_PATH, "a") as f:
|
174 |
f.write(json.dumps(log, indent=2) + "\n")
|
175 |
+
|