Spaces:
Paused
Paused
Commit
·
4e7c237
1
Parent(s):
7503185
Update app.py
Browse files
app.py
CHANGED
@@ -5,61 +5,68 @@ import requests
|
|
5 |
import os
|
6 |
from io import BytesIO
|
7 |
|
8 |
-
from utils.planner import extract_scene_plan # 🧠 Brain Layer
|
9 |
|
10 |
-
# Hugging Face ControlNet model
|
11 |
CONTROLNET_MODEL = "lllyasviel/controlnet-sdxl-1.0-canny"
|
12 |
HF_API = f"https://api-inference.huggingface.co/models/{CONTROLNET_MODEL}"
|
13 |
API_KEY = os.getenv("HF_API_KEY")
|
14 |
-
|
15 |
headers = {"Authorization": f"Bearer {API_KEY}"}
|
16 |
|
17 |
-
|
18 |
-
def process_image(prompt, image):
|
19 |
# Step 1: Brain Layer – extract structured JSON
|
20 |
reasoning_json = extract_scene_plan(prompt)
|
21 |
|
22 |
-
# Step 2:
|
23 |
buffered = BytesIO()
|
24 |
image.save(buffered, format="JPEG")
|
25 |
img_bytes = buffered.getvalue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
37 |
-
response = requests.post(HF_API, headers=headers, json=payload)
|
38 |
-
if response.status_code == 200:
|
39 |
-
result_image = Image.open(BytesIO(response.content))
|
40 |
-
else:
|
41 |
-
result_image = None
|
42 |
|
43 |
-
return result_image, reasoning_json
|
44 |
|
45 |
# Gradio UI
|
46 |
with gr.Blocks() as demo:
|
47 |
-
gr.Markdown("# 🧠 NewCrux AI Demo: Product → Lifestyle Image
|
48 |
|
49 |
with gr.Row():
|
50 |
with gr.Column():
|
51 |
prompt_input = gr.Textbox(label="Enter Prompt")
|
52 |
image_input = gr.Image(type="pil", label="Upload Product Image")
|
|
|
53 |
generate_btn = gr.Button("Generate")
|
54 |
|
55 |
with gr.Column():
|
56 |
-
|
57 |
json_output = gr.JSON(label="Brain Layer Reasoning (Scene Plan)")
|
58 |
|
59 |
generate_btn.click(
|
60 |
fn=process_image,
|
61 |
-
inputs=[prompt_input, image_input],
|
62 |
-
outputs=[
|
63 |
)
|
64 |
|
65 |
demo.launch()
|
|
|
5 |
import os
|
6 |
from io import BytesIO
|
7 |
|
8 |
+
from utils.planner import extract_scene_plan # 🧠 Brain Layer
|
9 |
|
|
|
10 |
CONTROLNET_MODEL = "lllyasviel/controlnet-sdxl-1.0-canny"
|
11 |
HF_API = f"https://api-inference.huggingface.co/models/{CONTROLNET_MODEL}"
|
12 |
API_KEY = os.getenv("HF_API_KEY")
|
|
|
13 |
headers = {"Authorization": f"Bearer {API_KEY}"}
|
14 |
|
15 |
+
|
16 |
+
def process_image(prompt, image, num_variations):
|
17 |
# Step 1: Brain Layer – extract structured JSON
|
18 |
reasoning_json = extract_scene_plan(prompt)
|
19 |
|
20 |
+
# Step 2: Encode image once
|
21 |
buffered = BytesIO()
|
22 |
image.save(buffered, format="JPEG")
|
23 |
img_bytes = buffered.getvalue()
|
24 |
+
encoded_image = base64.b64encode(img_bytes).decode("utf-8")
|
25 |
+
|
26 |
+
outputs = []
|
27 |
+
|
28 |
+
for i in range(num_variations):
|
29 |
+
payload = {
|
30 |
+
"inputs": {
|
31 |
+
"prompt": prompt,
|
32 |
+
"image": encoded_image,
|
33 |
+
"negative_prompt": "blurry, deformed, cropped"
|
34 |
+
},
|
35 |
+
"options": {"wait_for_model": True}
|
36 |
+
}
|
37 |
|
38 |
+
try:
|
39 |
+
response = requests.post(HF_API, headers=headers, json=payload)
|
40 |
+
if response.status_code == 200:
|
41 |
+
result_image = Image.open(BytesIO(response.content))
|
42 |
+
outputs.append(result_image)
|
43 |
+
else:
|
44 |
+
outputs.append(f"Error: {response.status_code} - {response.text}")
|
45 |
+
except Exception as e:
|
46 |
+
outputs.append(f"Exception: {e}")
|
47 |
|
48 |
+
return outputs, reasoning_json
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
|
51 |
# Gradio UI
|
52 |
with gr.Blocks() as demo:
|
53 |
+
gr.Markdown("# 🧠 NewCrux AI Demo: Product → Lifestyle Image Generator")
|
54 |
|
55 |
with gr.Row():
|
56 |
with gr.Column():
|
57 |
prompt_input = gr.Textbox(label="Enter Prompt")
|
58 |
image_input = gr.Image(type="pil", label="Upload Product Image")
|
59 |
+
variation_slider = gr.Slider(1, 4, step=1, label="Number of Variations", value=1)
|
60 |
generate_btn = gr.Button("Generate")
|
61 |
|
62 |
with gr.Column():
|
63 |
+
output_gallery = gr.Gallery(label="Generated Images").style(grid=2, height="auto")
|
64 |
json_output = gr.JSON(label="Brain Layer Reasoning (Scene Plan)")
|
65 |
|
66 |
generate_btn.click(
|
67 |
fn=process_image,
|
68 |
+
inputs=[prompt_input, image_input, variation_slider],
|
69 |
+
outputs=[output_gallery, json_output]
|
70 |
)
|
71 |
|
72 |
demo.launch()
|