Manireddy1508 commited on
Commit
fdd3761
Β·
1 Parent(s): ed6c14c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -12
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import gradio as gr
2
  from PIL import Image
3
  import base64
@@ -7,14 +9,15 @@ from io import BytesIO
7
 
8
  from utils.planner import extract_scene_plan # 🧠 Brain Layer
9
 
10
- CONTROLNET_MODEL = "lllyasviel/controlnet-sdxl-1.0-canny"
11
- HF_API = f"https://api-inference.huggingface.co/models/{CONTROLNET_MODEL}"
12
- API_KEY = os.getenv("HF_API_KEY")
13
- headers = {"Authorization": f"Bearer {API_KEY}"}
14
-
15
 
 
16
  def process_image(prompt, image, num_variations):
17
- # Step 1: Brain Layer – extract structured JSON
18
  reasoning_json = extract_scene_plan(prompt)
19
 
20
  # Step 2: Encode image once
@@ -23,6 +26,7 @@ def process_image(prompt, image, num_variations):
23
  img_bytes = buffered.getvalue()
24
  encoded_image = base64.b64encode(img_bytes).decode("utf-8")
25
 
 
26
  outputs = []
27
 
28
  for i in range(num_variations):
@@ -36,31 +40,36 @@ def process_image(prompt, image, num_variations):
36
  }
37
 
38
  try:
39
- response = requests.post(HF_API, headers=headers, json=payload)
40
  if response.status_code == 200:
41
  result_image = Image.open(BytesIO(response.content))
42
  outputs.append(result_image)
43
  else:
44
- outputs.append(f"Error: {response.status_code} - {response.text}")
45
  except Exception as e:
46
  outputs.append(f"Exception: {e}")
47
 
48
  return outputs, reasoning_json
49
 
50
 
51
- # Gradio UI
52
  with gr.Blocks() as demo:
53
- gr.Markdown("# 🧠 NewCrux AI Demo: Product β†’ Lifestyle Image Generator")
54
 
55
  with gr.Row():
56
  with gr.Column():
57
  prompt_input = gr.Textbox(label="Enter Prompt")
58
  image_input = gr.Image(type="pil", label="Upload Product Image")
59
- variation_slider = gr.Slider(1, 4, step=1, label="Number of Variations", value=1)
60
  generate_btn = gr.Button("Generate")
61
 
62
  with gr.Column():
63
- output_gallery = gr.Gallery(label="Generated Images", columns=2, rows=2, height="auto")
 
 
 
 
 
64
  json_output = gr.JSON(label="Brain Layer Reasoning (Scene Plan)")
65
 
66
  generate_btn.click(
 
1
+ # app.py
2
+
3
  import gradio as gr
4
  from PIL import Image
5
  import base64
 
9
 
10
  from utils.planner import extract_scene_plan # 🧠 Brain Layer
11
 
12
+ # πŸ” Hugging Face + OpenAI keys (use Secrets)
13
+ HF_API_KEY = os.getenv("HF_API_KEY")
14
+ SDXL_MODEL_ID = "stabilityai/stable-diffusion-xl-base-1.0"
15
+ SDXL_API_URL = f"https://api-inference.huggingface.co/models/{SDXL_MODEL_ID}"
16
+ HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
17
 
18
+ # πŸš€ Image generation (no ControlNet)
19
  def process_image(prompt, image, num_variations):
20
+ # Step 1: Extract planning JSON from Brain Layer
21
  reasoning_json = extract_scene_plan(prompt)
22
 
23
  # Step 2: Encode image once
 
26
  img_bytes = buffered.getvalue()
27
  encoded_image = base64.b64encode(img_bytes).decode("utf-8")
28
 
29
+ # Step 3: Generate multiple variations using base SDXL
30
  outputs = []
31
 
32
  for i in range(num_variations):
 
40
  }
41
 
42
  try:
43
+ response = requests.post(SDXL_API_URL, headers=HEADERS, json=payload)
44
  if response.status_code == 200:
45
  result_image = Image.open(BytesIO(response.content))
46
  outputs.append(result_image)
47
  else:
48
+ outputs.append(f"Error {response.status_code}: {response.text}")
49
  except Exception as e:
50
  outputs.append(f"Exception: {e}")
51
 
52
  return outputs, reasoning_json
53
 
54
 
55
+ # 🎨 Gradio UI
56
  with gr.Blocks() as demo:
57
+ gr.Markdown("# 🧠 NewCrux AI Demo: Image-to-Image using Base SDXL + Brain Layer")
58
 
59
  with gr.Row():
60
  with gr.Column():
61
  prompt_input = gr.Textbox(label="Enter Prompt")
62
  image_input = gr.Image(type="pil", label="Upload Product Image")
63
+ variation_slider = gr.Slider(1, 4, step=1, value=1, label="Number of Variations")
64
  generate_btn = gr.Button("Generate")
65
 
66
  with gr.Column():
67
+ output_gallery = gr.Gallery(
68
+ label="Generated Image Variations",
69
+ columns=2,
70
+ rows=2,
71
+ height="auto"
72
+ )
73
  json_output = gr.JSON(label="Brain Layer Reasoning (Scene Plan)")
74
 
75
  generate_btn.click(