import streamlit as st @st.cache_resource def load_topic_transfomers(): from transformers import pipeline try: topic_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli",device="cuda", compute_type="float16") except Exception as e: topic_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") print("Error: ", e) return topic_classifier def suggest_topic(text): # while len(text)> 1024: # text = summarize(whole_text[:-10]) possible_topics = ["Gadgets", 'Business','Finance', 'Health', 'Sports', 'Politics','Government','Science','Education', 'Travel', 'Tourism', 'Finance & Economics','Market','Technology','Scientific Discovery', 'Entertainment','Environment','News & Media' "Space,Universe & Cosmos", "Fashion", "Manufacturing and Constructions","Law & Crime","Motivation", "Development & Socialization", "Archeology"] result = topic_classifier(text, possible_topics) return result['labels'] st.title("Topic Suggestion") if 'topic_model' not in st.session_state: with st.spinner("Loading Model....."): topic_classifier = load_topic_transfomers() st.success("Model_loaded") st.session_state.topic_model = True whole_text = st.text_input("Enter the text Here: ") try: predicted_topic = suggest_topic(whole_text) st.write('Suggested Topics') for i in predicted_topic[:10]: st.write(i) except Exception as e: print("Error", e)