File size: 2,987 Bytes
7ec133b
 
 
 
 
 
 
 
 
 
8323cfd
 
 
7ec133b
 
89e1517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ec133b
89e1517
 
7ec133b
89e1517
7ec133b
702cb53
89e1517
 
 
7ec133b
89e1517
 
7ec133b
89e1517
 
 
702cb53
89e1517
 
7ec133b
89e1517
7ec133b
702cb53
 
7ec133b
 
 
 
 
702cb53
 
6ca8deb
7ec133b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Set default device to CUDA for GPU acceleration
device = 'cuda' if torch.cuda.is_available() else "cpu"
# torch.set_default_device("cuda")

# Initialize the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow",  torch_dtype=torch.float16, 
    device_map="auto",
    trust_remote_code=True).to(device)
tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True)

# def predict_answer(image, question):
#     # Convert PIL image to RGB if not already
#     image = image.convert("RGB")
    
#     # # Format the text input for the model
#     # text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question} ASSISTANT:"
    
#     # Tokenize the text input
#     encoding = tokenizer(image, question, return_tensors='pt').to(device)

#     out = model.generate(**encoding)
#     # Preprocess the image for the model
#     generated_text = tokenizer.decode(out[0], skip_special_tokens=True)
    
#     # # Generate the answer
#     # output_ids = model.generate(
#     #     input_ids,
#     #     max_new_tokens=100,
#     #     images=image_tensor,
#     #     use_cache=True)[0]
    
#     # # Decode the generated tokens to get the answer
#     # answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
    
#     return generated_text

def predict_answer(image, question, max_tokens):
    #Set inputs
    text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
    image = Image.open(image)
    
    input_ids = tokenizer(text, return_tensors='pt').input_ids
    image_tensor = model.image_preprocess(image)
    
    #Generate the answer
    output_ids = model.generate(
        input_ids,
        max_new_tokens=max_tokens,
        images=image_tensor,
        use_cache=True)[0]
    
    return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()

def gradio_predict(image, question, max_tokens=25):
    answer = predict_answer(image, question, max_tokens)
    return answer

# Define the Gradio interface
iface = gr.Interface(
    fn=gradio_predict,
    inputs=[gr.Image(type="pil", label="Upload or Drag an Image"), 
            gr.Textbox(label="Question", placeholder="e.g. What are the colors of the bus in the image?", scale=4),
            gr.Slider(2, 100, value=25, label="Count", info="Choose between 2 and 100")],
    outputs=gr.TextArea(label="Answer"),
    title="Sparrow-based Visual Question Answering",
    description="An interactive chat model that can answer questions about images.",
)

# Launch the app
iface.queue().launch(debug=True)