Spaces:
Paused
Paused
File size: 4,767 Bytes
7ec133b 9db455c 85e7ead 7ec133b c52e238 fb293c4 c52e238 7ec133b f8dcf83 a4115fd f8dcf83 7ec133b 9db455c b499d7f 7294f1e b499d7f 7294f1e b499d7f 7294f1e b499d7f 7294f1e 9db455c b499d7f 0a6288f feb8185 0a6288f 9db455c 0a6288f 9db455c 0a6288f fa7747b 0a6288f 9db455c 0a6288f 9db455c 0a6288f fa7747b 0a6288f 85e7ead 0a6288f fa7747b 0a6288f fa7747b 0a6288f 85e7ead fa7747b 0a6288f fa7747b 0a6288f 7ec133b b499d7f 0a6288f b499d7f 2724204 7ec133b b499d7f 7ec133b 0a6288f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import cv2
import numpy as np
import ast
# # Ensure GPU usage if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
def video_to_frames(video, fps=1):
"""Converts a video file into frames and stores them as PNG images in a list."""
frames_png = []
cap = cv2.VideoCapture(video)
if not cap.isOpened():
print("Error opening video file")
return frames_png
frame_count = 0
frame_interval = int(cap.get(cv2.CAP_PROP_FPS)) // fps # Calculate frame interval
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
if frame_count % frame_interval == 0:
is_success, buffer = cv2.imencode(".png", frame)
if is_success:
frames_png.append(np.array(buffer).tobytes())
frame_count += 1
cap.release()
return frames_png
def extract_frames(frame):
# Convert binary data to a numpy array
frame_np = np.frombuffer(frame, dtype=np.uint8)
# Decode the PNG image
image_rgb = cv2.imdecode(frame_np, flags=cv2.IMREAD_COLOR) # Assuming it's in RGB format
# Convert RGB to BGR
image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
return image_bgr
def predict_answer(image, video, question, max_tokens=100):
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
# frames = video_to_frames(video)
# answers = []
# for i in range(len(frames)):
# image = extract_frames(frames[i])
# image_tensor = model.image_preprocess([image])
# # Generate the answer
# output_ids = model.generate(
# input_ids,
# max_new_tokens=max_tokens,
# images=image_tensor,
# use_cache=True)[0]
# answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
# answers.append(answer)
# return answers
if image:
# Process as an image
image = image.convert("RGB")
image_tensor = model.image_preprocess(image)
#Generate the answer
output_ids = model.generate(
input_ids,
max_new_tokens=max_tokens,
images=image_tensor,
use_cache=True)[0]
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
elif video:
# Process as a video
frames = video_to_frames(video)
answers = []
for i in range(len(frames)):
image = extract_frames(frames[i])
image_tensor = model.image_preprocess([image])
# Generate the answer
output_ids = model.generate(
input_ids,
max_new_tokens=max_tokens,
images=image_tensor,
use_cache=True)[0]
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
answers.append(answer)
return ast.literal_eval(answers[0])
else:
return "Unsupported file type. Please upload an image or video."
def gradio_predict(image, video, question, max_tokens):
answer = predict_answer(image, video, question, max_tokens)
return answer
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(type="pil", label="Upload or Drag an Image"),
gr.Video(label="Upload your video here"),
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
outputs=gr.TextArea(label="Answer"),
# outputs=gr.Image(label="Output"),
title="Video/Image Viewer",
description="Upload an image or video to view it or extract frames from the video.",
)
iface.launch(debug=True)
|