File size: 2,008 Bytes
7ec133b
 
 
 
 
cb78e99
7ec133b
 
a4115fd
 
 
 
7ec133b
 
702cb53
89e1517
 
a58a8ea
7ec133b
cb78e99
89e1517
7ec133b
89e1517
 
 
702cb53
89e1517
 
7ec133b
89e1517
7ec133b
a4001c8
702cb53
7ec133b
 
 
 
 
702cb53
 
6ca8deb
7ec133b
9da530e
1c6e643
7ec133b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")

# Initialize the model and tokenizer
model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow",
                                             torch_dtype=torch.float16, 
                                             device_map="auto",
                                             trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True)

def predict_answer(image, question, max_tokens):
    #Set inputs
    text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
    image = image.convert("RGB")
    
    input_ids = tokenizer(text, return_tensors='pt').input_ids.to("cuda:0", torch.float16)
    image_tensor = model.image_preprocess(image)
    
    #Generate the answer
    output_ids = model.generate(
        input_ids,
        max_new_tokens=max_tokens,
        images=image_tensor,
        use_cache=True)[0]
    
    return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()

def gradio_predict(image, question, max_tokens):
    answer = predict_answer(image, question, max_tokens)
    return answer

# Define the Gradio interface
iface = gr.Interface(
    fn=gradio_predict,
    inputs=[gr.Image(type="pil", label="Upload or Drag an Image"), 
            gr.Textbox(label="Question", placeholder="e.g. What are the colors of the bus in the image?", scale=4),
            gr.Slider(2, 100, value=25, label="Count", info="Choose between 2 and 100")],
    outputs=gr.TextArea(label="Answer"),
    title="Sparrow - Tiny 3B | Visual Question Answering",
    description="An interactive chat model that can answer questions about images in Academic contest.",
)

# Launch the app
iface.queue().launch(debug=True)