Spaces:
Paused
Paused
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
torch.set_default_device("cuda") | |
# Initialize the model and tokenizer | |
model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow", | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True) | |
def predict_answer(image, question, max_tokens): | |
#Set inputs | |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:" | |
image = image.convert("RGB") | |
input_ids = tokenizer(text, return_tensors='pt').input_ids | |
image_tensor = model.image_preprocess(image) | |
#Generate the answer | |
output_ids = model.generate( | |
input_ids, | |
max_new_tokens=max_tokens, | |
images=image_tensor, | |
use_cache=True)[0] | |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
def gradio_predict(image, question, max_tokens): | |
answer = predict_answer(image, question, max_tokens) | |
return answer | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=gradio_predict, | |
inputs=[gr.Image(type="pil", label="Upload or Drag an Image"), | |
gr.Textbox(label="Question", placeholder="e.g. What are the colors of the bus in the image?", scale=4), | |
gr.Slider(2, 100, value=25, label="Count", info="Choose between 2 and 100")], | |
outputs=gr.TextArea(label="Answer"), | |
title="Sparrow - Tiny 3B | Visual Question Answering", | |
description="An interactive chat model that can answer questions about images in Academic contest.", | |
) | |
# Launch the app | |
iface.queue().launch(debug=True) | |