Spaces:
Runtime error
Runtime error
Rename old_app.py to multi_video_app.py
Browse files- multi_video_app.py +125 -0
- old_app.py +0 -102
multi_video_app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.filterwarnings("ignore")
|
3 |
+
import gradio as gr
|
4 |
+
import re
|
5 |
+
from typing import Dict, List
|
6 |
+
import csv
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
from src.video_model import describe_video
|
10 |
+
from src.utils import parse_string, parse_annotations
|
11 |
+
|
12 |
+
# Utility functions (from your provided utilities)
|
13 |
+
|
14 |
+
# Function to save data to a CSV file
|
15 |
+
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str:
|
16 |
+
if not os.path.exists(output_dir):
|
17 |
+
os.makedirs(output_dir)
|
18 |
+
|
19 |
+
csv_file = os.path.join(output_dir, "video_observations.csv")
|
20 |
+
|
21 |
+
with open(csv_file, mode='w', newline='') as file:
|
22 |
+
writer = csv.writer(file)
|
23 |
+
writer.writerow(["video_name", "standing", "hands_free", "indoors", "screen_interaction_yes"])
|
24 |
+
for observation in observations:
|
25 |
+
writer.writerow([
|
26 |
+
observation['video_name'],
|
27 |
+
observation['standing'],
|
28 |
+
observation['hands_free'],
|
29 |
+
observation['indoors'],
|
30 |
+
observation['screen_interaction_yes']
|
31 |
+
])
|
32 |
+
|
33 |
+
return csv_file
|
34 |
+
|
35 |
+
# Function to process a single video and return the observation data
|
36 |
+
def process_single_video(video_path: str, sitting, hands, location, screen) -> Dict:
|
37 |
+
video_name = os.path.basename(video_path) # Extract video name from the path
|
38 |
+
query = "Describe this video in detail and answer the questions"
|
39 |
+
additional_info = []
|
40 |
+
if sitting:
|
41 |
+
additional_info.append("Is the subject in the video standing or sitting?")
|
42 |
+
if hands:
|
43 |
+
additional_info.append("Is the subject holding any object in their hands, if so the hands are not free else they are free?")
|
44 |
+
if location:
|
45 |
+
additional_info.append("Is the subject present indoors or outdoors?")
|
46 |
+
if screen:
|
47 |
+
additional_info.append("Is the subject interacting with a screen in the background by facing the screen?")
|
48 |
+
|
49 |
+
end_query = """Provide the results in <annotation> tags, where 0 indicates False, 1 indicates True, and None indicates that no information is present. Follow the below examples:
|
50 |
+
<annotation>indoors: 0</annotation>
|
51 |
+
<annotation>standing: 1</annotation>
|
52 |
+
<annotation>hands.free: 0</annotation>
|
53 |
+
<annotation>screen.interaction_yes: 0</annotation>
|
54 |
+
"""
|
55 |
+
|
56 |
+
final_query = query + " " + " ".join(additional_info)
|
57 |
+
final_prompt = final_query + " " + end_query
|
58 |
+
|
59 |
+
# Assuming your describe_video function handles the video processing
|
60 |
+
response = describe_video(video_path, final_prompt)
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Parse the annotations from the response
|
64 |
+
tags = ["annotation"]
|
65 |
+
parsed_data = parse_string(response, tags)
|
66 |
+
annotations_list = parsed_data.get("annotation", [])
|
67 |
+
annotations_dict = parse_annotations(annotations_list)
|
68 |
+
|
69 |
+
return {
|
70 |
+
"video_name": video_name,
|
71 |
+
"standing": annotations_dict.get("standing", 'N/A'),
|
72 |
+
"hands_free": annotations_dict.get("hands.free", 'N/A'),
|
73 |
+
"indoors": annotations_dict.get("indoors", 'N/A'),
|
74 |
+
"screen_interaction_yes": annotations_dict.get("screen.interaction_yes", 'N/A'),
|
75 |
+
}
|
76 |
+
except Exception as e:
|
77 |
+
return {"error": f"An error occurred with {video_name}: {e}"}
|
78 |
+
|
79 |
+
# Function to process all videos in a folder
|
80 |
+
def process_folder_of_videos(videos_folder: str, sitting, hands, location, screen):
|
81 |
+
all_observations = []
|
82 |
+
video_files = [os.path.join(videos_folder, f) for f in os.listdir(videos_folder) if f.endswith(('.mp4', '.avi', '.mkv'))]
|
83 |
+
|
84 |
+
for video_path in video_files:
|
85 |
+
observation = process_single_video(video_path, sitting, hands, location, screen)
|
86 |
+
if "error" not in observation:
|
87 |
+
all_observations.append(observation)
|
88 |
+
else:
|
89 |
+
print(observation["error"]) # Log any errors
|
90 |
+
|
91 |
+
# Clear GPU cache
|
92 |
+
torch.cuda.empty_cache()
|
93 |
+
|
94 |
+
# Save all observations to a CSV file and return the file path
|
95 |
+
csv_file = save_to_csv(all_observations)
|
96 |
+
return "Processing completed. Download the CSV file.", csv_file
|
97 |
+
|
98 |
+
# Gradio interface
|
99 |
+
def gradio_interface(videos_folder, sitting, hands, location, screen):
|
100 |
+
return process_folder_of_videos(videos_folder, sitting, hands, location, screen)
|
101 |
+
|
102 |
+
# Inputs
|
103 |
+
videos_folder = gr.Directory(label="Upload a folder of videos")
|
104 |
+
sitting = gr.Checkbox(label="Sitting/Standing")
|
105 |
+
hands = gr.Checkbox(label="Hands Free/Not Free")
|
106 |
+
location = gr.Checkbox(label="Indoors/Outdoors")
|
107 |
+
screen = gr.Checkbox(label="Screen Interaction")
|
108 |
+
|
109 |
+
# Outputs
|
110 |
+
response = gr.Textbox(label="Status")
|
111 |
+
download_link = gr.File(label="Download CSV")
|
112 |
+
|
113 |
+
# Gradio interface setup
|
114 |
+
interface = gr.Interface(
|
115 |
+
fn=gradio_interface,
|
116 |
+
inputs=[videos_folder, sitting, hands, location, screen],
|
117 |
+
outputs=[response, download_link],
|
118 |
+
title="Batch Video Annotation",
|
119 |
+
description="Upload a folder of videos and process them sequentially, saving the results to a downloadable CSV file.",
|
120 |
+
theme=gr.themes.Soft(primary_hue="red", secondary_hue="red"),
|
121 |
+
allow_flagging="never"
|
122 |
+
)
|
123 |
+
|
124 |
+
# Launch interface
|
125 |
+
interface.launch(debug=False)
|
old_app.py
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
import warnings
|
2 |
-
warnings.filterwarnings("ignore")
|
3 |
-
import gradio as gr
|
4 |
-
import pandas as pd
|
5 |
-
from src.video_model import describe_video
|
6 |
-
from src.utils import parse_string, parse_annotations
|
7 |
-
import os
|
8 |
-
|
9 |
-
# --- Function to construct the final query ---
|
10 |
-
def process_video_and_questions(video, standing, hands, location, screen):
|
11 |
-
video_name = os.path.basename(video)
|
12 |
-
query = f"Answer the questions from the video\n"
|
13 |
-
additional_info = []
|
14 |
-
if standing:
|
15 |
-
additional_info.append("Is the subject in the video standing or sitting?\n")
|
16 |
-
if hands:
|
17 |
-
additional_info.append("Is the subject holding any object in their hands?\n")
|
18 |
-
if location:
|
19 |
-
additional_info.append("Is the subject present indoors?\n")
|
20 |
-
if screen:
|
21 |
-
additional_info.append("Is the subject interacting with a screen in the background by facing the screen?\n")
|
22 |
-
|
23 |
-
end_query = """Provide the results in <annotation> tags, where 0 indicates False, 1 indicates True, and None indicates that no information is present. Follow the below examples\n:
|
24 |
-
<annotation>indoors: 0</annotation>
|
25 |
-
<annotation>standing: 1</annotation>
|
26 |
-
<annotation>hands.free: 0</annotation>
|
27 |
-
<annotation>screen.interaction_yes: 0</annotation>
|
28 |
-
"""
|
29 |
-
|
30 |
-
final_query = query + " " + " ".join(additional_info)
|
31 |
-
final_prompt = final_query + " " + end_query
|
32 |
-
|
33 |
-
response = describe_video(video, final_prompt)
|
34 |
-
final_response = f"<video_name>{video_name}</video_name>" + " \n" + response
|
35 |
-
|
36 |
-
conditions = {
|
37 |
-
'standing': (standing, 'standing: 1', 'standing: None'),
|
38 |
-
'hands': (hands, 'hands.free: 1', 'hands.free: None'),
|
39 |
-
'location': (location, 'indoors: 1', 'indoors: None'),
|
40 |
-
'screen': (screen, 'screen.interaction_yes: 1', 'screen.interaction_yes: None')
|
41 |
-
}
|
42 |
-
|
43 |
-
for key, (condition, to_replace, replacement) in conditions.items():
|
44 |
-
if not condition:
|
45 |
-
final_response = final_response.replace(to_replace, replacement)
|
46 |
-
|
47 |
-
return final_response
|
48 |
-
|
49 |
-
def process_multiple_videos(video_files, standing, hands, location, screen):
|
50 |
-
# Initialize an empty DataFrame to store results for all videos
|
51 |
-
all_results_df = pd.DataFrame()
|
52 |
-
|
53 |
-
for video in video_files:
|
54 |
-
final_response = process_video_and_questions(video.name, standing, hands, location, screen)
|
55 |
-
video_df = output_to_csv(final_response)
|
56 |
-
all_results_df = pd.concat([all_results_df, video_df], ignore_index=True)
|
57 |
-
|
58 |
-
# Save the combined results as a CSV file
|
59 |
-
csv_file_path = "multiple_videos_annotations.csv"
|
60 |
-
all_results_df.to_csv(csv_file_path, index=False)
|
61 |
-
|
62 |
-
return csv_file_path # Return the path to the CSV file for download
|
63 |
-
|
64 |
-
def output_to_csv(final_response):
|
65 |
-
parsed_content = parse_string(final_response, ["video_name", "annotation"])
|
66 |
-
video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None
|
67 |
-
annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {}
|
68 |
-
|
69 |
-
df = pd.DataFrame([{'video_name': video_name, **annotations_dict}])
|
70 |
-
|
71 |
-
return df
|
72 |
-
|
73 |
-
title = "GSoC Super Raid Annotator"
|
74 |
-
description = "Annotate Multiple Videos"
|
75 |
-
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"
|
76 |
-
|
77 |
-
custom_theme = gr.themes.Soft(primary_hue="red", secondary_hue="red")
|
78 |
-
|
79 |
-
with gr.Blocks(theme=custom_theme) as demo:
|
80 |
-
gr.Markdown(f"# {title}")
|
81 |
-
gr.Markdown(description)
|
82 |
-
gr.Markdown(article)
|
83 |
-
|
84 |
-
with gr.Row():
|
85 |
-
with gr.Column():
|
86 |
-
video_files = gr.Files(label="Upload Videos", file_count="multiple")
|
87 |
-
standing = gr.Checkbox(label="Standing")
|
88 |
-
hands = gr.Checkbox(label="Hands Free")
|
89 |
-
location = gr.Checkbox(label="Indoors")
|
90 |
-
screen = gr.Checkbox(label="Screen Interaction")
|
91 |
-
generate_csv_btn = gr.Button("Process and Generate CSV")
|
92 |
-
|
93 |
-
with gr.Column():
|
94 |
-
csv_output = gr.File(label="Download CSV", interactive=False)
|
95 |
-
|
96 |
-
generate_csv_btn.click(
|
97 |
-
fn=process_multiple_videos,
|
98 |
-
inputs=[video_files, standing, hands, location, screen],
|
99 |
-
outputs=csv_output
|
100 |
-
)
|
101 |
-
|
102 |
-
demo.launch(debug=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|