Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import fitz
|
| 4 |
+
import openai
|
| 5 |
+
import sqlite3
|
| 6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
+
import pdfplumber
|
| 10 |
+
|
| 11 |
+
# Initialize once
|
| 12 |
+
@st.cache_resource
|
| 13 |
+
def init_system():
|
| 14 |
+
# 1. Process PDF
|
| 15 |
+
process_pdf("Q1FY24.pdf")
|
| 16 |
+
|
| 17 |
+
# 2. Load pre-processed data
|
| 18 |
+
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 19 |
+
vector_store = FAISS.load_local("faiss_index", embeddings)
|
| 20 |
+
|
| 21 |
+
# 3. Connect SQL
|
| 22 |
+
conn = sqlite3.connect('metric_table.db')
|
| 23 |
+
return vector_store, conn
|
| 24 |
+
|
| 25 |
+
def process_pdf(pdf_path):
|
| 26 |
+
# Structured Data
|
| 27 |
+
conn = sqlite3.connect('metric_table.db')
|
| 28 |
+
cursor = conn.cursor()
|
| 29 |
+
cursor.execute('''CREATE TABLE IF NOT EXISTS metric_table
|
| 30 |
+
(metric TEXT, quarter TEXT, value REAL)''')
|
| 31 |
+
|
| 32 |
+
# Unstructured Data
|
| 33 |
+
full_text = ""
|
| 34 |
+
doc = fitz.open(pdf_path)
|
| 35 |
+
|
| 36 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 37 |
+
for page_num, page in enumerate(pdf.pages):
|
| 38 |
+
# Structured extraction
|
| 39 |
+
if "Financial Performance Summary" in page.extract_text():
|
| 40 |
+
tables = page.extract_tables()
|
| 41 |
+
# Add to SQL (example)
|
| 42 |
+
|
| 43 |
+
# ... (Add full processing logic from previous code)
|
| 44 |
+
|
| 45 |
+
# Save vector store
|
| 46 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
|
| 47 |
+
chunks = splitter.split_text(full_text)
|
| 48 |
+
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 49 |
+
FAISS.from_texts(chunks, embeddings).save_local("faiss_index")
|
| 50 |
+
|
| 51 |
+
# Streamlit UI
|
| 52 |
+
def main():
|
| 53 |
+
st.title("Fundrev Financial Analyzer")
|
| 54 |
+
|
| 55 |
+
# Initialize system
|
| 56 |
+
vector_store, conn = init_system()
|
| 57 |
+
|
| 58 |
+
query = st.text_input("Ask financial question:")
|
| 59 |
+
|
| 60 |
+
if query:
|
| 61 |
+
# Hybrid query logic
|
| 62 |
+
if any(keyword in query.lower() for keyword in ["trend", "margin", "growth"]):
|
| 63 |
+
cursor = conn.cursor()
|
| 64 |
+
cursor.execute(f"SELECT * FROM metric_table WHERE metric LIKE '%{query}%'")
|
| 65 |
+
st.table(cursor.fetchall())
|
| 66 |
+
else:
|
| 67 |
+
docs = vector_store.similarity_search(query)
|
| 68 |
+
st.write(docs[0].page_content)
|
| 69 |
+
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
main()
|