Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,46 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import fitz
|
4 |
-
import openai
|
5 |
import sqlite3
|
6 |
-
from langchain.embeddings import OpenAIEmbeddings
|
7 |
-
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
import pdfplumber
|
|
|
|
|
|
|
10 |
|
11 |
-
# Initialize
|
12 |
@st.cache_resource
|
13 |
def init_system():
|
14 |
# 1. Process PDF
|
15 |
process_pdf("Q1FY24.pdf")
|
16 |
|
17 |
-
# 2. Load
|
18 |
-
embeddings = OpenAIEmbeddings(openai_api_key="
|
|
|
|
|
19 |
vector_store = FAISS.load_local("faiss_index", embeddings)
|
20 |
|
21 |
-
#
|
22 |
conn = sqlite3.connect('metric_table.db')
|
23 |
return vector_store, conn
|
24 |
|
25 |
def process_pdf(pdf_path):
|
26 |
-
# Structured Data
|
27 |
conn = sqlite3.connect('metric_table.db')
|
28 |
cursor = conn.cursor()
|
29 |
cursor.execute('''CREATE TABLE IF NOT EXISTS metric_table
|
30 |
(metric TEXT, quarter TEXT, value REAL)''')
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
with pdfplumber.open(pdf_path) as pdf:
|
37 |
-
for page_num, page in enumerate(pdf.pages):
|
38 |
-
# Structured extraction
|
39 |
-
if "Financial Performance Summary" in page.extract_text():
|
40 |
-
tables = page.extract_tables()
|
41 |
-
# Add to SQL (example)
|
42 |
|
43 |
-
#
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
|
47 |
chunks = splitter.split_text(full_text)
|
48 |
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
@@ -58,14 +56,16 @@ def main():
|
|
58 |
query = st.text_input("Ask financial question:")
|
59 |
|
60 |
if query:
|
61 |
-
#
|
62 |
-
if any(
|
63 |
cursor = conn.cursor()
|
64 |
cursor.execute(f"SELECT * FROM metric_table WHERE metric LIKE '%{query}%'")
|
65 |
-
|
|
|
|
|
66 |
else:
|
67 |
-
docs = vector_store.similarity_search(query)
|
68 |
-
st.write(docs[0].page_content)
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
main()
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import fitz
|
|
|
4 |
import sqlite3
|
|
|
|
|
|
|
5 |
import pdfplumber
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_openai import OpenAIEmbeddings
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
|
10 |
+
# Initialize system
|
11 |
@st.cache_resource
|
12 |
def init_system():
|
13 |
# 1. Process PDF
|
14 |
process_pdf("Q1FY24.pdf")
|
15 |
|
16 |
+
# 2. Load embeddings with secure API key
|
17 |
+
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
18 |
+
|
19 |
+
# 3. Load vector store
|
20 |
vector_store = FAISS.load_local("faiss_index", embeddings)
|
21 |
|
22 |
+
# 4. Connect SQL
|
23 |
conn = sqlite3.connect('metric_table.db')
|
24 |
return vector_store, conn
|
25 |
|
26 |
def process_pdf(pdf_path):
|
27 |
+
# Structured Data Extraction
|
28 |
conn = sqlite3.connect('metric_table.db')
|
29 |
cursor = conn.cursor()
|
30 |
cursor.execute('''CREATE TABLE IF NOT EXISTS metric_table
|
31 |
(metric TEXT, quarter TEXT, value REAL)''')
|
32 |
|
33 |
+
# Example metric insertion (add full extraction logic)
|
34 |
+
cursor.execute("INSERT INTO metric_table VALUES ('Revenue', 'Q1 FY24', 19.8)")
|
35 |
+
conn.commit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Unstructured Data Processing
|
38 |
+
full_text = ""
|
39 |
+
with fitz.open(pdf_path) as doc:
|
40 |
+
for page in doc:
|
41 |
+
full_text += page.get_text()
|
42 |
|
43 |
+
# Text Chunking & Embedding
|
44 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
|
45 |
chunks = splitter.split_text(full_text)
|
46 |
embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
|
|
56 |
query = st.text_input("Ask financial question:")
|
57 |
|
58 |
if query:
|
59 |
+
# Structured data queries
|
60 |
+
if any(kw in query.lower() for kw in ["trend", "margin", "revenue"]):
|
61 |
cursor = conn.cursor()
|
62 |
cursor.execute(f"SELECT * FROM metric_table WHERE metric LIKE '%{query}%'")
|
63 |
+
results = cursor.fetchall()
|
64 |
+
st.table(results if results else "No matching metrics found")
|
65 |
+
# Unstructured data queries
|
66 |
else:
|
67 |
+
docs = vector_store.similarity_search(query, k=1)
|
68 |
+
st.write(docs[0].page_content if docs else "No relevant information found")
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
main()
|