Manju017's picture
Updated to load the model in 8-bit precision to reduce memory usage
98c19b4 verified
raw
history blame
910 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ai4bharat/Airavata"
# Load the model in 8-bit precision to reduce memory usage
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
load_in_8bit=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate_text(prompt, max_length):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=max_length)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
interface = gr.Interface(
fn=generate_text,
inputs=[
gr.inputs.Textbox(label="Enter your prompt"),
gr.inputs.Slider(10, 100, step=10, label="Max length")
],
outputs="text",
title="Airavata Text Generation Model",
description="Generate text in Indic languages using the Airavata model."
)
interface.launch()