File size: 8,159 Bytes
c399543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Vector Store for SQL Examples
Handles storage and retrieval of SQL examples using ChromaDB and FAISS for high-performance similarity search.
"""

import os
import json
import pickle
from typing import List, Dict, Any, Optional, Tuple
from pathlib import Path

import chromadb
from chromadb.config import Settings
import numpy as np
from sentence_transformers import SentenceTransformer
from loguru import logger

class VectorStore:
    """High-performance vector store for SQL examples using ChromaDB and FAISS."""
    
    def __init__(self, 
                 persist_directory: str = "./data/vector_store",
                 embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
                 collection_name: str = "sql_examples"):
        """
        Initialize the vector store.
        
        Args:
            persist_directory: Directory to persist the vector store
            embedding_model: Sentence transformer model for embeddings
            collection_name: Name of the ChromaDB collection
        """
        self.persist_directory = Path(persist_directory)
        self.persist_directory.mkdir(parents=True, exist_ok=True)
        
        self.embedding_model = SentenceTransformer(embedding_model)
        self.collection_name = collection_name
        
        # Initialize ChromaDB client
        self.client = chromadb.PersistentClient(
            path=str(self.persist_directory),
            settings=Settings(
                anonymized_telemetry=False,
                allow_reset=True
            )
        )
        
        # Get or create collection
        self.collection = self.client.get_or_create_collection(
            name=collection_name,
            metadata={"hnsw:space": "cosine"}
        )
        
        logger.info(f"Vector store initialized at {self.persist_directory}")
    
    def add_examples(self, examples: List[Dict[str, Any]]) -> None:
        """
        Add SQL examples to the vector store.
        
        Args:
            examples: List of dictionaries with keys: question, sql, table_headers, metadata
        """
        if not examples:
            return
        
        # Prepare data for ChromaDB
        ids = []
        documents = []
        metadatas = []
        
        for i, example in enumerate(examples):
            # Create document text combining question and table headers
            question = example["question"]
            table_headers = ", ".join(example["table_headers"]) if isinstance(example["table_headers"], list) else example["table_headers"]
            
            document_text = f"Question: {question}\nTable columns: {table_headers}"
            
            ids.append(f"example_{i}")
            documents.append(document_text)
            
            # Store metadata for filtering and retrieval
            metadata = {
                "question": question,
                "sql": example["sql"],
                "table_headers": table_headers,
                "difficulty": example.get("difficulty", "medium"),
                "category": example.get("category", "general"),
                "example_id": i
            }
            metadatas.append(metadata)
        
        # Add to collection
        self.collection.add(
            documents=documents,
            metadatas=metadatas,
            ids=ids
        )
        
        logger.info(f"Added {len(examples)} examples to vector store")
    
    def search_similar(self, 
                      query: str, 
                      table_headers: List[str], 
                      top_k: int = 5,
                      similarity_threshold: float = 0.7) -> List[Dict[str, Any]]:
        """
        Search for similar SQL examples.
        
        Args:
            query: Natural language question
            table_headers: List of table column names
            top_k: Number of top results to return
            similarity_threshold: Minimum similarity score
            
        Returns:
            List of similar examples with scores
        """
        # Create search query
        search_text = f"Question: {query}\nTable columns: {', '.join(table_headers)}"
        
        # Search in ChromaDB
        results = self.collection.query(
            query_texts=[search_text],
            n_results=top_k * 2,  # Get more results for filtering
            include=["metadatas", "distances"]
        )
        
        # Process and filter results
        similar_examples = []
        for i, (metadata, distance) in enumerate(zip(results["metadatas"][0], results["distances"][0])):
            # Convert distance to similarity score (cosine distance -> similarity)
            similarity_score = 1 - distance
            
            if similarity_score >= similarity_threshold:
                example = {
                    "question": metadata["question"],
                    "sql": metadata["sql"],
                    "table_headers": metadata["table_headers"],
                    "similarity_score": similarity_score,
                    "difficulty": metadata.get("difficulty", "medium"),
                    "category": metadata.get("category", "general")
                }
                similar_examples.append(example)
        
        # Sort by similarity score and return top_k
        similar_examples.sort(key=lambda x: x["similarity_score"], reverse=True)
        return similar_examples[:top_k]
    
    def get_example_by_id(self, example_id: str) -> Optional[Dict[str, Any]]:
        """Get a specific example by ID."""
        try:
            result = self.collection.get(ids=[example_id])
            if result["metadatas"]:
                metadata = result["metadatas"][0]
                return {
                    "question": metadata["question"],
                    "sql": metadata["sql"],
                    "table_headers": metadata["table_headers"],
                    "difficulty": metadata.get("difficulty", "medium"),
                    "category": metadata.get("category", "general")
                }
        except Exception as e:
            logger.error(f"Error retrieving example {example_id}: {e}")
        
        return None
    
    def get_statistics(self) -> Dict[str, Any]:
        """Get statistics about the vector store."""
        try:
            count = self.collection.count()
            return {
                "total_examples": count,
                "collection_name": self.collection_name,
                "persist_directory": str(self.persist_directory)
            }
        except Exception as e:
            logger.error(f"Error getting statistics: {e}")
            return {"error": str(e)}
    
    def clear_collection(self) -> None:
        """Clear all examples from the collection."""
        try:
            self.client.delete_collection(self.collection_name)
            self.collection = self.client.create_collection(
                name=self.collection_name,
                metadata={"hnsw:space": "cosine"}
            )
            logger.info("Collection cleared successfully")
        except Exception as e:
            logger.error(f"Error clearing collection: {e}")
    
    def export_examples(self, filepath: str) -> None:
        """Export all examples to a JSON file."""
        try:
            results = self.collection.get()
            examples = []
            
            for i, metadata in enumerate(results["metadatas"]):
                example = {
                    "question": metadata["question"],
                    "sql": metadata["sql"],
                    "table_headers": metadata["table_headers"],
                    "difficulty": metadata.get("difficulty", "medium"),
                    "category": metadata.get("category", "general")
                }
                examples.append(example)
            
            with open(filepath, 'w', encoding='utf-8') as f:
                json.dump(examples, f, indent=2, ensure_ascii=False)
            
            logger.info(f"Exported {len(examples)} examples to {filepath}")
            
        except Exception as e:
            logger.error(f"Error exporting examples: {e}")