File size: 16,781 Bytes
c399543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
"""
Data Processor for RAG System
Processes WikiSQL dataset and prepares data for the RAG system.
"""
import json
import os
from typing import List, Dict, Any, Optional, Tuple
from pathlib import Path
import pandas as pd
from datasets import load_dataset
from loguru import logger
class DataProcessor:
"""Processes WikiSQL dataset for RAG system."""
def __init__(self, data_dir: str = "./data"):
"""
Initialize the data processor.
Args:
data_dir: Directory to store processed data
"""
self.data_dir = Path(data_dir)
self.data_dir.mkdir(parents=True, exist_ok=True)
# File paths
self.processed_data_path = self.data_dir / "processed_examples.json"
self.vector_store_data_path = self.data_dir / "vector_store_data.json"
self.statistics_path = self.data_dir / "data_statistics.json"
logger.info(f"Data processor initialized at {self.data_dir}")
def process_wikisql_dataset(self,
max_examples: Optional[int] = None,
split: str = "train") -> List[Dict[str, Any]]:
"""
Process WikiSQL dataset and prepare examples for RAG system.
Args:
max_examples: Maximum number of examples to process (None for all)
split: Dataset split to use ('train', 'validation', 'test')
Returns:
List of processed examples
"""
try:
logger.info(f"Loading WikiSQL {split} dataset...")
# Load dataset
dataset = load_dataset("wikisql", split=split)
if max_examples:
dataset = dataset.select(range(min(max_examples, len(dataset))))
logger.info(f"Processing {len(dataset)} examples...")
# Process examples
processed_examples = []
for i, example in enumerate(dataset):
processed_example = self._process_single_example(example, i)
if processed_example:
processed_examples.append(processed_example)
# Progress logging
if (i + 1) % 1000 == 0:
logger.info(f"Processed {i + 1}/{len(dataset)} examples")
# Save processed data
self._save_processed_data(processed_examples)
# Generate statistics
stats = self._generate_statistics(processed_examples)
self._save_statistics(stats)
logger.info(f"Successfully processed {len(processed_examples)} examples")
return processed_examples
except Exception as e:
logger.error(f"Error processing WikiSQL dataset: {e}")
raise
def _process_single_example(self, example: Dict[str, Any], index: int) -> Optional[Dict[str, Any]]:
"""
Process a single WikiSQL example.
Args:
example: Raw example from WikiSQL dataset
index: Example index
Returns:
Processed example or None if invalid
"""
try:
# Extract basic information
question = example.get("question", "").strip()
table_headers = example.get("table", {}).get("header", [])
sql_query = example.get("sql", {}).get("human_readable", "")
# Validate example
if not question or not table_headers or not sql_query:
return None
# Clean and normalize
question = self._clean_text(question)
table_headers = [self._clean_text(h) for h in table_headers]
sql_query = self._clean_sql(sql_query)
# Analyze complexity and categorize
complexity = self._assess_example_complexity(question, sql_query)
category = self._categorize_example(question, sql_query)
# Create processed example
processed_example = {
"example_id": f"wikisql_{index}",
"question": question,
"table_headers": table_headers,
"sql": sql_query,
"difficulty": complexity,
"category": category,
"metadata": {
"source": "wikisql",
"split": "train",
"original_index": index,
"table_name": example.get("table", {}).get("name", "unknown"),
"question_type": self._classify_question_type(question),
"sql_features": self._extract_sql_features(sql_query)
}
}
return processed_example
except Exception as e:
logger.warning(f"Error processing example {index}: {e}")
return None
def _clean_text(self, text: str) -> str:
"""Clean and normalize text."""
if not text:
return ""
# Remove extra whitespace
text = " ".join(text.split())
# Remove special characters that might cause issues
text = text.replace('"', "'").replace('"', "'")
return text.strip()
def _clean_sql(self, sql: str) -> str:
"""Clean and normalize SQL query."""
if not sql:
return ""
# Remove extra whitespace
sql = " ".join(sql.split())
# Ensure proper SQL formatting
sql = sql.replace(" ,", ",").replace(", ", ",")
sql = sql.replace(" (", "(").replace("( ", "(")
sql = sql.replace(" )", ")").replace(") ", ")")
# Add semicolon if missing
if not sql.endswith(';'):
sql += ';'
return sql.strip()
def _assess_example_complexity(self, question: str, sql: str) -> str:
"""Assess the complexity of an example."""
complexity_score = 0
# Question complexity
if len(question.split()) > 15:
complexity_score += 2
elif len(question.split()) > 10:
complexity_score += 1
# SQL complexity
sql_lower = sql.lower()
if 'join' in sql_lower:
complexity_score += 2
if 'group by' in sql_lower:
complexity_score += 2
if 'having' in sql_lower:
complexity_score += 2
if 'subquery' in sql_lower or '(' in sql_lower and ')' in sql_lower:
complexity_score += 2
if 'union' in sql_lower or 'intersect' in sql_lower:
complexity_score += 3
# Determine difficulty level
if complexity_score >= 6:
return "hard"
elif complexity_score >= 3:
return "medium"
else:
return "easy"
def _categorize_example(self, question: str, sql: str) -> str:
"""Categorize the example based on question and SQL."""
question_lower = question.lower()
sql_lower = sql.lower()
# Aggregation queries
if any(word in question_lower for word in ['count', 'how many', 'number of']):
return "aggregation"
elif any(word in question_lower for word in ['average', 'mean', 'sum', 'total']):
return "aggregation"
# Grouping queries
elif any(word in question_lower for word in ['group by', 'grouped', 'by department', 'by category']):
return "grouping"
# Join queries
elif any(word in question_lower for word in ['join', 'combine', 'merge', 'connect']):
return "join"
# Sorting queries
elif any(word in question_lower for word in ['order by', 'sort', 'rank', 'top', 'highest', 'lowest']):
return "sorting"
# Filtering queries
elif any(word in question_lower for word in ['where', 'filter', 'condition']):
return "filtering"
# Simple queries
else:
return "simple"
def _classify_question_type(self, question: str) -> str:
"""Classify the type of question."""
question_lower = question.lower()
if '?' in question_lower:
return "interrogative"
elif any(word in question_lower for word in ['show', 'display', 'list']):
return "display"
elif any(word in question_lower for word in ['find', 'get', 'retrieve']):
return "retrieval"
else:
return "statement"
def _extract_sql_features(self, sql: str) -> List[str]:
"""Extract SQL features from the query."""
features = []
sql_lower = sql.lower()
if 'select' in sql_lower:
features.append("select")
if 'from' in sql_lower:
features.append("from")
if 'where' in sql_lower:
features.append("where")
if 'join' in sql_lower:
features.append("join")
if 'group by' in sql_lower:
features.append("group_by")
if 'having' in sql_lower:
features.append("having")
if 'order by' in sql_lower:
features.append("order_by")
if 'limit' in sql_lower:
features.append("limit")
if 'distinct' in sql_lower:
features.append("distinct")
if 'count(' in sql_lower:
features.append("count_aggregation")
if 'avg(' in sql_lower:
features.append("avg_aggregation")
if 'sum(' in sql_lower:
features.append("sum_aggregation")
return features
def _save_processed_data(self, examples: List[Dict[str, Any]]) -> None:
"""Save processed examples to file."""
try:
with open(self.processed_data_path, 'w', encoding='utf-8') as f:
json.dump(examples, f, indent=2, ensure_ascii=False)
logger.info(f"Saved {len(examples)} processed examples to {self.processed_data_path}")
except Exception as e:
logger.error(f"Error saving processed data: {e}")
def _save_statistics(self, stats: Dict[str, Any]) -> None:
"""Save data statistics to file."""
try:
with open(self.statistics_path, 'w', encoding='utf-8') as f:
json.dump(stats, f, indent=2, ensure_ascii=False)
logger.info(f"Saved statistics to {self.statistics_path}")
except Exception as e:
logger.error(f"Error saving statistics: {e}")
def _generate_statistics(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Generate comprehensive statistics about the processed data."""
if not examples:
return {"error": "No examples to analyze"}
# Basic counts
total_examples = len(examples)
# Difficulty distribution
difficulty_counts = {}
for example in examples:
difficulty = example.get("difficulty", "unknown")
difficulty_counts[difficulty] = difficulty_counts.get(difficulty, 0) + 1
# Category distribution
category_counts = {}
for example in examples:
category = example.get("category", "unknown")
category_counts[category] = category_counts.get(category, 0) + 1
# Question type distribution
question_type_counts = {}
for example in examples:
question_type = example.get("metadata", {}).get("question_type", "unknown")
question_type_counts[question_type] = question_type_counts.get(question_type, 0) + 1
# SQL features distribution
sql_features_counts = {}
for example in examples:
features = example.get("metadata", {}).get("sql_features", [])
for feature in features:
sql_features_counts[feature] = sql_features_counts.get(feature, 0) + 1
# Table schema statistics
table_sizes = []
for example in examples:
headers = example.get("table_headers", [])
table_sizes.append(len(headers))
avg_table_size = sum(table_sizes) / len(table_sizes) if table_sizes else 0
return {
"total_examples": total_examples,
"difficulty_distribution": difficulty_counts,
"category_distribution": category_counts,
"question_type_distribution": question_type_counts,
"sql_features_distribution": sql_features_counts,
"table_schema_stats": {
"average_columns": avg_table_size,
"min_columns": min(table_sizes) if table_sizes else 0,
"max_columns": max(table_sizes) if table_sizes else 0
},
"data_quality": {
"examples_with_questions": sum(1 for e in examples if e.get("question")),
"examples_with_sql": sum(1 for e in examples if e.get("sql")),
"examples_with_headers": sum(1 for e in examples if e.get("table_headers"))
}
}
def load_processed_data(self) -> List[Dict[str, Any]]:
"""Load previously processed data."""
try:
if self.processed_data_path.exists():
with open(self.processed_data_path, 'r', encoding='utf-8') as f:
data = json.load(f)
logger.info(f"Loaded {len(data)} processed examples")
return data
else:
logger.warning("No processed data found")
return []
except Exception as e:
logger.error(f"Error loading processed data: {e}")
return []
def get_data_statistics(self) -> Dict[str, Any]:
"""Get current data statistics."""
try:
if self.statistics_path.exists():
with open(self.statistics_path, 'r', encoding='utf-8') as f:
stats = json.load(f)
return stats
else:
return {"error": "No statistics available"}
except Exception as e:
logger.error(f"Error loading statistics: {e}")
return {"error": str(e)}
def create_sample_dataset(self, num_examples: int = 100) -> List[Dict[str, Any]]:
"""Create a small sample dataset for testing."""
sample_examples = [
{
"example_id": "sample_1",
"question": "How many employees are older than 30?",
"table_headers": ["id", "name", "age", "department", "salary"],
"sql": "SELECT COUNT(*) FROM employees WHERE age > 30;",
"difficulty": "easy",
"category": "aggregation",
"metadata": {
"source": "sample",
"question_type": "interrogative",
"sql_features": ["select", "count_aggregation", "where"]
}
},
{
"example_id": "sample_2",
"question": "Show all employees in IT department",
"table_headers": ["id", "name", "age", "department", "salary"],
"sql": "SELECT * FROM employees WHERE department = 'IT';",
"difficulty": "easy",
"category": "filtering",
"metadata": {
"source": "sample",
"question_type": "display",
"sql_features": ["select", "where"]
}
},
{
"example_id": "sample_3",
"question": "What is the average salary by department?",
"table_headers": ["id", "name", "age", "department", "salary"],
"sql": "SELECT department, AVG(salary) FROM employees GROUP BY department;",
"difficulty": "medium",
"category": "grouping",
"metadata": {
"source": "sample",
"question_type": "interrogative",
"sql_features": ["select", "avg_aggregation", "group_by"]
}
}
]
# Add more examples if requested
while len(sample_examples) < num_examples:
base_example = sample_examples[len(sample_examples) % 3]
new_example = base_example.copy()
new_example["example_id"] = f"sample_{len(sample_examples) + 1}"
sample_examples.append(new_example)
return sample_examples[:num_examples]
|