|
import gradio as gr |
|
import requests |
|
import json |
|
import time |
|
|
|
def generate_sql(question, table_headers): |
|
"""Generate SQL using the RAG API.""" |
|
try: |
|
|
|
data = { |
|
"question": question, |
|
"table_headers": [h.strip() for h in table_headers.split(",") if h.strip()] |
|
} |
|
|
|
|
|
response = requests.post("http://localhost:8000/predict", json=data) |
|
|
|
if response.status_code == 200: |
|
result = response.json() |
|
return f""" |
|
**Generated SQL:** |
|
```sql |
|
{result['sql_query']} |
|
``` |
|
|
|
**Model Used:** {result['model_used']} |
|
**Processing Time:** {result['processing_time']:.2f}s |
|
**Status:** {result['status']} |
|
**Retrieved Examples:** {len(result['retrieved_examples'])} examples used for RAG |
|
""" |
|
else: |
|
return f"β Error: {response.status_code} - {response.text}" |
|
|
|
except Exception as e: |
|
return f"β Error: {str(e)}" |
|
|
|
def batch_generate_sql(questions_text, table_headers): |
|
"""Generate SQL for multiple questions.""" |
|
try: |
|
|
|
questions = [q.strip() for q in questions_text.split("\n") if q.strip()] |
|
|
|
|
|
data = { |
|
"queries": [ |
|
{ |
|
"question": q, |
|
"table_headers": [h.strip() for h in table_headers.split(",") if h.strip()] |
|
} |
|
for q in questions |
|
] |
|
} |
|
|
|
|
|
response = requests.post("http://localhost:8000/batch", json=data) |
|
|
|
if response.status_code == 200: |
|
result = response.json() |
|
output = f"**Batch Results:**\n" |
|
output += f"Total Queries: {result['total_queries']}\n" |
|
output += f"Successful: {result['successful_queries']}\n\n" |
|
|
|
for i, res in enumerate(result['results']): |
|
output += f"**Query {i+1}:** {res['question']}\n" |
|
output += f"```sql\n{res['sql_query']}\n```\n" |
|
output += f"Model: {res['model_used']} | Time: {res['processing_time']:.2f}s\n\n" |
|
|
|
return output |
|
else: |
|
return f"β Error: {response.status_code} - {response.text}" |
|
|
|
except Exception as e: |
|
return f"β Error: {str(e)}" |
|
|
|
def check_system_health(): |
|
"""Check the health of the RAG system.""" |
|
try: |
|
response = requests.get("http://localhost:8000/health") |
|
if response.status_code == 200: |
|
health_data = response.json() |
|
return f""" |
|
**System Health:** |
|
- **Status:** {health_data['status']} |
|
- **System Loaded:** {health_data['system_loaded']} |
|
- **System Loading:** {health_data['system_loading']} |
|
- **Error:** {health_data['system_error'] or 'None'} |
|
- **Timestamp:** {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(health_data['timestamp']))} |
|
|
|
**Model Info:** |
|
{json.dumps(health_data.get('model_info', {}), indent=2) if health_data.get('model_info') else 'Not available'} |
|
""" |
|
else: |
|
return f"β Health check failed: {response.status_code}" |
|
except Exception as e: |
|
return f"β Health check error: {str(e)}" |
|
|
|
|
|
with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# π Text-to-SQL RAG with CodeLlama") |
|
gr.Markdown("Generate SQL queries from natural language using **RAG (Retrieval-Augmented Generation)** and **CodeLlama** models.") |
|
gr.Markdown("**Features:** RAG-enhanced generation, CodeLlama integration, Vector-based retrieval, Advanced prompt engineering") |
|
|
|
with gr.Tab("Single Query"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
question_input = gr.Textbox( |
|
label="Question", |
|
placeholder="e.g., Show me all employees with salary greater than 50000", |
|
lines=3 |
|
) |
|
table_headers_input = gr.Textbox( |
|
label="Table Headers (comma-separated)", |
|
placeholder="e.g., id, name, salary, department", |
|
value="id, name, salary, department" |
|
) |
|
generate_btn = gr.Button("π Generate SQL", variant="primary", size="lg") |
|
|
|
with gr.Column(scale=1): |
|
output = gr.Markdown(label="Result") |
|
|
|
with gr.Tab("Batch Queries"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
batch_questions = gr.Textbox( |
|
label="Questions (one per line)", |
|
placeholder="Show me all employees\nCount total employees\nAverage salary by department", |
|
lines=5 |
|
) |
|
batch_headers = gr.Textbox( |
|
label="Table Headers (comma-separated)", |
|
placeholder="e.g., id, name, salary, department", |
|
value="id, name, salary, department" |
|
) |
|
batch_btn = gr.Button("π Generate Batch SQL", variant="primary", size="lg") |
|
|
|
with gr.Column(scale=1): |
|
batch_output = gr.Markdown(label="Batch Results") |
|
|
|
with gr.Tab("System Health"): |
|
with gr.Row(): |
|
health_btn = gr.Button("π Check System Health", variant="secondary", size="lg") |
|
health_output = gr.Markdown(label="Health Status") |
|
|
|
|
|
generate_btn.click( |
|
generate_sql, |
|
inputs=[question_input, table_headers_input], |
|
outputs=output |
|
) |
|
|
|
batch_btn.click( |
|
batch_generate_sql, |
|
inputs=[batch_questions, batch_headers], |
|
outputs=batch_output |
|
) |
|
|
|
health_btn.click( |
|
check_system_health, |
|
outputs=health_output |
|
) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown(""" |
|
## π― How It Works |
|
|
|
1. **RAG System**: Retrieves relevant SQL examples from vector database |
|
2. **CodeLlama**: Generates SQL using retrieved examples as context |
|
3. **Vector Search**: Finds similar questions and their SQL solutions |
|
4. **Enhanced Generation**: Combines retrieval + generation for better accuracy |
|
|
|
## π οΈ Technology Stack |
|
|
|
- **Backend**: FastAPI + Python |
|
- **LLM**: CodeLlama-7B-Python-GGUF (primary) |
|
- **Vector DB**: ChromaDB with sentence transformers |
|
- **Frontend**: Gradio interface |
|
- **Hosting**: Hugging Face Spaces |
|
|
|
## π Performance |
|
|
|
- **Model**: CodeLlama-7B-Python-GGUF |
|
- **Response Time**: < 5 seconds |
|
- **Accuracy**: High (RAG-enhanced) |
|
- **Cost**: Free (local inference) |
|
""") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|