Changes in app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,114 @@
|
|
1 |
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def generate_sql(question, table_headers):
|
7 |
-
"""Generate SQL using the RAG
|
|
|
|
|
|
|
8 |
try:
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
}
|
14 |
|
15 |
-
|
16 |
-
response = requests.post("http://localhost:8000/predict", json=data)
|
17 |
|
18 |
-
|
19 |
-
result = response.json()
|
20 |
-
return f"""
|
21 |
**Generated SQL:**
|
22 |
```sql
|
23 |
{result['sql_query']}
|
24 |
```
|
25 |
|
26 |
**Model Used:** {result['model_used']}
|
27 |
-
**Processing Time:** {
|
28 |
**Status:** {result['status']}
|
29 |
**Retrieved Examples:** {len(result['retrieved_examples'])} examples used for RAG
|
30 |
"""
|
31 |
-
else:
|
32 |
-
return f"β Error: {response.status_code} - {response.text}"
|
33 |
-
|
34 |
except Exception as e:
|
35 |
return f"β Error: {str(e)}"
|
36 |
|
37 |
def batch_generate_sql(questions_text, table_headers):
|
38 |
"""Generate SQL for multiple questions."""
|
|
|
|
|
|
|
39 |
try:
|
40 |
# Parse questions
|
41 |
questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
{
|
47 |
-
"question": q,
|
48 |
-
"table_headers": [h.strip() for h in table_headers.split(",") if h.strip()]
|
49 |
-
}
|
50 |
-
for q in questions
|
51 |
-
]
|
52 |
-
}
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
if response.status_code == 200:
|
58 |
-
result = response.json()
|
59 |
-
output = f"**Batch Results:**\n"
|
60 |
-
output += f"Total Queries: {result['total_queries']}\n"
|
61 |
-
output += f"Successful: {result['successful_queries']}\n\n"
|
62 |
-
|
63 |
-
for i, res in enumerate(result['results']):
|
64 |
-
output += f"**Query {i+1}:** {res['question']}\n"
|
65 |
-
output += f"```sql\n{res['sql_query']}\n```\n"
|
66 |
-
output += f"Model: {res['model_used']} | Time: {res['processing_time']:.2f}s\n\n"
|
67 |
-
|
68 |
-
return output
|
69 |
-
else:
|
70 |
-
return f"β Error: {response.status_code} - {response.text}"
|
71 |
-
|
72 |
except Exception as e:
|
73 |
return f"β Error: {str(e)}"
|
74 |
|
75 |
def check_system_health():
|
76 |
"""Check the health of the RAG system."""
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
**System Health:**
|
83 |
-
- **Status:**
|
84 |
-
- **System Loaded:**
|
85 |
-
- **System Loading:**
|
86 |
-
- **Error:**
|
87 |
-
- **Timestamp:** {time.strftime('%Y-%m-%d %H:%M:%S'
|
88 |
|
89 |
**Model Info:**
|
90 |
-
{json.dumps(
|
91 |
"""
|
92 |
-
else:
|
93 |
-
return f"β Health check failed: {response.status_code}"
|
94 |
except Exception as e:
|
95 |
return f"β Health check error: {str(e)}"
|
96 |
|
97 |
# Create Gradio interface
|
98 |
with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) as demo:
|
99 |
-
gr.Markdown("#
|
100 |
gr.Markdown("Generate SQL queries from natural language using **RAG (Retrieval-Augmented Generation)** and **CodeLlama** models.")
|
101 |
gr.Markdown("**Features:** RAG-enhanced generation, CodeLlama integration, Vector-based retrieval, Advanced prompt engineering")
|
102 |
|
@@ -113,7 +125,7 @@ with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) a
|
|
113 |
placeholder="e.g., id, name, salary, department",
|
114 |
value="id, name, salary, department"
|
115 |
)
|
116 |
-
generate_btn = gr.Button("
|
117 |
|
118 |
with gr.Column(scale=1):
|
119 |
output = gr.Markdown(label="Result")
|
@@ -131,14 +143,14 @@ with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) a
|
|
131 |
placeholder="e.g., id, name, salary, department",
|
132 |
value="id, name, salary, department"
|
133 |
)
|
134 |
-
batch_btn = gr.Button("
|
135 |
|
136 |
with gr.Column(scale=1):
|
137 |
batch_output = gr.Markdown(label="Batch Results")
|
138 |
|
139 |
with gr.Tab("System Health"):
|
140 |
with gr.Row():
|
141 |
-
health_btn = gr.Button("
|
142 |
health_output = gr.Markdown(label="Health Status")
|
143 |
|
144 |
# Event handlers
|
@@ -161,22 +173,22 @@ with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) a
|
|
161 |
|
162 |
gr.Markdown("---")
|
163 |
gr.Markdown("""
|
164 |
-
##
|
165 |
|
166 |
1. **RAG System**: Retrieves relevant SQL examples from vector database
|
167 |
2. **CodeLlama**: Generates SQL using retrieved examples as context
|
168 |
3. **Vector Search**: Finds similar questions and their SQL solutions
|
169 |
4. **Enhanced Generation**: Combines retrieval + generation for better accuracy
|
170 |
|
171 |
-
##
|
172 |
|
173 |
-
- **Backend**:
|
174 |
- **LLM**: CodeLlama-7B-Python-GGUF (primary)
|
175 |
- **Vector DB**: ChromaDB with sentence transformers
|
176 |
- **Frontend**: Gradio interface
|
177 |
- **Hosting**: Hugging Face Spaces
|
178 |
|
179 |
-
##
|
180 |
|
181 |
- **Model**: CodeLlama-7B-Python-GGUF
|
182 |
- **Response Time**: < 5 seconds
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import time
|
3 |
+
import json
|
4 |
+
|
5 |
+
# Import RAG system components
|
6 |
+
from rag_system.vector_store import VectorStore
|
7 |
+
from rag_system.retriever import SQLRetriever
|
8 |
+
from rag_system.prompt_engine import PromptEngine
|
9 |
+
from rag_system.sql_generator import SQLGenerator
|
10 |
+
|
11 |
+
# Initialize RAG system components
|
12 |
+
print("Initializing RAG system...")
|
13 |
+
try:
|
14 |
+
vector_store = VectorStore()
|
15 |
+
retriever = SQLRetriever(vector_store)
|
16 |
+
prompt_engine = PromptEngine()
|
17 |
+
sql_generator = SQLGenerator(retriever, prompt_engine)
|
18 |
+
print("RAG system initialized successfully!")
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error initializing RAG system: {e}")
|
21 |
+
sql_generator = None
|
22 |
|
23 |
def generate_sql(question, table_headers):
|
24 |
+
"""Generate SQL using the RAG system directly."""
|
25 |
+
if sql_generator is None:
|
26 |
+
return "β Error: RAG system not initialized"
|
27 |
+
|
28 |
try:
|
29 |
+
start_time = time.time()
|
30 |
+
|
31 |
+
# Generate SQL using RAG system
|
32 |
+
result = sql_generator.generate_sql(question, table_headers)
|
|
|
33 |
|
34 |
+
processing_time = time.time() - start_time
|
|
|
35 |
|
36 |
+
return f"""
|
|
|
|
|
37 |
**Generated SQL:**
|
38 |
```sql
|
39 |
{result['sql_query']}
|
40 |
```
|
41 |
|
42 |
**Model Used:** {result['model_used']}
|
43 |
+
**Processing Time:** {processing_time:.2f}s
|
44 |
**Status:** {result['status']}
|
45 |
**Retrieved Examples:** {len(result['retrieved_examples'])} examples used for RAG
|
46 |
"""
|
|
|
|
|
|
|
47 |
except Exception as e:
|
48 |
return f"β Error: {str(e)}"
|
49 |
|
50 |
def batch_generate_sql(questions_text, table_headers):
|
51 |
"""Generate SQL for multiple questions."""
|
52 |
+
if sql_generator is None:
|
53 |
+
return "β Error: RAG system not initialized"
|
54 |
+
|
55 |
try:
|
56 |
# Parse questions
|
57 |
questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
|
58 |
|
59 |
+
output = f"**Batch Results:**\n"
|
60 |
+
output += f"Total Queries: {len(questions)}\n"
|
61 |
+
successful_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
for i, question in enumerate(questions):
|
64 |
+
try:
|
65 |
+
start_time = time.time()
|
66 |
+
result = sql_generator.generate_sql(question, table_headers)
|
67 |
+
processing_time = time.time() - start_time
|
68 |
+
|
69 |
+
output += f"\n**Query {i+1}:** {question}\n"
|
70 |
+
output += f"```sql\n{result['sql_query']}\n```\n"
|
71 |
+
output += f"Model: {result['model_used']} | Time: {processing_time:.2f}s\n"
|
72 |
+
|
73 |
+
if result['status'] == 'success':
|
74 |
+
successful_count += 1
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
output += f"\n**Query {i+1}:** {question}\n"
|
78 |
+
output += f"β Error: {str(e)}\n"
|
79 |
+
|
80 |
+
output += f"\n**Successful:** {successful_count}/{len(questions)}"
|
81 |
+
return output
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
except Exception as e:
|
84 |
return f"β Error: {str(e)}"
|
85 |
|
86 |
def check_system_health():
|
87 |
"""Check the health of the RAG system."""
|
88 |
try:
|
89 |
+
if sql_generator is None:
|
90 |
+
return "β System Status: RAG system not initialized"
|
91 |
+
|
92 |
+
# Get model info
|
93 |
+
model_info = sql_generator.get_model_info()
|
94 |
+
|
95 |
+
return f"""
|
96 |
**System Health:**
|
97 |
+
- **Status:** β
Healthy
|
98 |
+
- **System Loaded:** β
Yes
|
99 |
+
- **System Loading:** β No
|
100 |
+
- **Error:** None
|
101 |
+
- **Timestamp:** {time.strftime('%Y-%m-%d %H:%M:%S')}
|
102 |
|
103 |
**Model Info:**
|
104 |
+
{json.dumps(model_info, indent=2) if model_info else 'Not available'}
|
105 |
"""
|
|
|
|
|
106 |
except Exception as e:
|
107 |
return f"β Health check error: {str(e)}"
|
108 |
|
109 |
# Create Gradio interface
|
110 |
with gr.Blocks(title="Text-to-SQL RAG with CodeLlama", theme=gr.themes.Soft()) as demo:
|
111 |
+
gr.Markdown("#Text-to-SQL RAG with CodeLlama")
|
112 |
gr.Markdown("Generate SQL queries from natural language using **RAG (Retrieval-Augmented Generation)** and **CodeLlama** models.")
|
113 |
gr.Markdown("**Features:** RAG-enhanced generation, CodeLlama integration, Vector-based retrieval, Advanced prompt engineering")
|
114 |
|
|
|
125 |
placeholder="e.g., id, name, salary, department",
|
126 |
value="id, name, salary, department"
|
127 |
)
|
128 |
+
generate_btn = gr.Button("Generate SQL", variant="primary", size="lg")
|
129 |
|
130 |
with gr.Column(scale=1):
|
131 |
output = gr.Markdown(label="Result")
|
|
|
143 |
placeholder="e.g., id, name, salary, department",
|
144 |
value="id, name, salary, department"
|
145 |
)
|
146 |
+
batch_btn = gr.Button("Generate Batch SQL", variant="primary", size="lg")
|
147 |
|
148 |
with gr.Column(scale=1):
|
149 |
batch_output = gr.Markdown(label="Batch Results")
|
150 |
|
151 |
with gr.Tab("System Health"):
|
152 |
with gr.Row():
|
153 |
+
health_btn = gr.Button("Check System Health", variant="secondary", size="lg")
|
154 |
health_output = gr.Markdown(label="Health Status")
|
155 |
|
156 |
# Event handlers
|
|
|
173 |
|
174 |
gr.Markdown("---")
|
175 |
gr.Markdown("""
|
176 |
+
## How It Works
|
177 |
|
178 |
1. **RAG System**: Retrieves relevant SQL examples from vector database
|
179 |
2. **CodeLlama**: Generates SQL using retrieved examples as context
|
180 |
3. **Vector Search**: Finds similar questions and their SQL solutions
|
181 |
4. **Enhanced Generation**: Combines retrieval + generation for better accuracy
|
182 |
|
183 |
+
## Technology Stack
|
184 |
|
185 |
+
- **Backend**: Direct RAG system integration
|
186 |
- **LLM**: CodeLlama-7B-Python-GGUF (primary)
|
187 |
- **Vector DB**: ChromaDB with sentence transformers
|
188 |
- **Frontend**: Gradio interface
|
189 |
- **Hosting**: Hugging Face Spaces
|
190 |
|
191 |
+
## Performance
|
192 |
|
193 |
- **Model**: CodeLlama-7B-Python-GGUF
|
194 |
- **Response Time**: < 5 seconds
|