""" Prompt Engine for SQL Generation Constructs intelligent prompts for SQL generation using retrieved examples and best practices. """ import json from typing import List, Dict, Any, Optional from pathlib import Path from loguru import logger class PromptEngine: """Intelligent prompt construction for SQL generation.""" def __init__(self, prompts_dir: str = "./prompts"): """ Initialize the prompt engine. Args: prompts_dir: Directory containing prompt templates """ self.prompts_dir = Path(prompts_dir) self.prompts_dir.mkdir(parents=True, exist_ok=True) # Load prompt templates self.templates = self._load_prompt_templates() # Default system prompt self.default_system_prompt = """You are an expert SQL developer. Your task is to convert natural language questions into accurate SQL queries. Key Guidelines: 1. Always use the exact table column names provided 2. Generate standard SQL syntax (compatible with most databases) 3. Use appropriate JOINs when multiple tables are involved 4. Apply proper WHERE clauses for filtering 5. Use GROUP BY for aggregations when needed 6. Ensure queries are efficient and readable 7. Handle edge cases appropriately Table Schema: {table_schema} Retrieved Examples: {examples} Question: {question} Generate the SQL query:""" def _load_prompt_templates(self) -> Dict[str, str]: """Load prompt templates from files.""" templates = {} # Create default templates if they don't exist default_templates = { "sql_generation.txt": self._get_default_sql_prompt(), "few_shot_examples.txt": self._get_default_few_shot_prompt(), "error_correction.txt": self._get_default_error_correction_prompt() } for filename, content in default_templates.items(): template_path = self.prompts_dir / filename if not template_path.exists(): with open(template_path, 'w', encoding='utf-8') as f: f.write(content) logger.info(f"Created default template: {filename}") # Load the template with open(template_path, 'r', encoding='utf-8') as f: templates[filename.replace('.txt', '')] = f.read() return templates def _get_default_sql_prompt(self) -> str: """Get default SQL generation prompt template.""" return """You are an expert SQL developer. Convert the natural language question to SQL. Table Schema: {table_schema} Examples: {examples} Question: {question} Generate SQL:""" def _get_default_few_shot_prompt(self) -> str: """Get default few-shot learning prompt template.""" return """Given these examples, generate SQL for the new question: Examples: {examples} New Question: {question} Table Schema: {table_schema} SQL Query:""" def _get_default_error_correction_prompt(self) -> str: """Get default error correction prompt template.""" return """The following SQL query has an error. Please correct it: Original Question: {question} Table Schema: {table_schema} Incorrect SQL: {incorrect_sql} Error: {error_message} Corrected SQL:""" def construct_sql_prompt(self, question: str, table_headers: List[str], retrieved_examples: List[Dict[str, Any]], prompt_type: str = "sql_generation") -> str: """ Construct a prompt for SQL generation. Args: question: Natural language question table_headers: List of table column names retrieved_examples: List of retrieved relevant examples prompt_type: Type of prompt to use Returns: Constructed prompt string """ # Format table schema table_schema = self._format_table_schema(table_headers) # Format examples examples_text = self._format_examples(retrieved_examples) # Get template template = self.templates.get(prompt_type, self.templates["sql_generation"]) # Fill template prompt = template.format( question=question, table_schema=table_schema, examples=examples_text ) return prompt def construct_enhanced_prompt(self, question: str, table_headers: List[str], retrieved_examples: List[Dict[str, Any]], additional_context: Optional[Dict[str, Any]] = None) -> str: """ Construct an enhanced prompt with additional context and examples. Args: question: Natural language question table_headers: List of table column names retrieved_examples: List of retrieved relevant examples additional_context: Additional context information Returns: Enhanced prompt string """ # Start with system prompt prompt_parts = [self.default_system_prompt] # Add table schema table_schema = self._format_table_schema(table_headers) prompt_parts.append(f"Table Schema: {table_schema}\n") # Add retrieved examples with relevance scores if retrieved_examples: prompt_parts.append("Relevant Examples (ordered by relevance):") for i, example in enumerate(retrieved_examples[:3], 1): # Top 3 examples relevance = example.get("final_score", example.get("similarity_score", 0)) prompt_parts.append(f"\nExample {i} (Relevance: {relevance:.2f}):") prompt_parts.append(f"Question: {example['question']}") prompt_parts.append(f"SQL: {example['sql']}") prompt_parts.append(f"Table: {example['table_headers']}") # Add additional context if provided if additional_context: prompt_parts.append("\nAdditional Context:") for key, value in additional_context.items(): prompt_parts.append(f"{key}: {value}") # Add the current question prompt_parts.append(f"\nCurrent Question: {question}") prompt_parts.append("\nGenerate the SQL query:") return "\n".join(prompt_parts) def construct_few_shot_prompt(self, question: str, table_headers: List[str], examples: List[Dict[str, Any]]) -> str: """ Construct a few-shot learning prompt. Args: question: Natural language question table_headers: List of table column names examples: List of examples for few-shot learning Returns: Few-shot prompt string """ template = self.templates["few_shot_examples"] # Format examples in a structured way examples_text = "" for i, example in enumerate(examples[:5], 1): # Use top 5 examples examples_text += f"\n--- Example {i} ---\n" examples_text += f"Question: {example['question']}\n" examples_text += f"Table: {example['table_headers']}\n" examples_text += f"SQL: {example['sql']}\n" table_schema = self._format_table_schema(table_headers) return template.format( examples=examples_text, question=question, table_schema=table_schema ) def construct_error_correction_prompt(self, question: str, table_headers: List[str], incorrect_sql: str, error_message: str) -> str: """ Construct a prompt for error correction. Args: question: Natural language question table_headers: List of table column names incorrect_sql: The incorrect SQL query error_message: Error message or description Returns: Error correction prompt string """ template = self.templates["error_correction"] table_schema = self._format_table_schema(table_headers) return template.format( question=question, table_schema=table_schema, incorrect_sql=incorrect_sql, error_message=error_message ) def _format_table_schema(self, table_headers: List[str]) -> str: """Format table headers into a readable schema.""" if not table_headers: return "No table schema provided" # Group headers by type for better readability schema_parts = [] # Primary keys and IDs pk_headers = [h for h in table_headers if 'id' in h.lower() or 'key' in h.lower()] if pk_headers: schema_parts.append(f"Primary Keys: {', '.join(pk_headers)}") # Text fields text_headers = [h for h in table_headers if any(word in h.lower() for word in ['name', 'title', 'description', 'text'])] if text_headers: schema_parts.append(f"Text Fields: {', '.join(text_headers)}") # Numeric fields numeric_headers = [h for h in table_headers if any(word in h.lower() for word in ['age', 'count', 'price', 'salary', 'amount', 'number'])] if numeric_headers: schema_parts.append(f"Numeric Fields: {', '.join(numeric_headers)}") # Date fields date_headers = [h for h in table_headers if any(word in h.lower() for word in ['date', 'time', 'created', 'updated', 'birth'])] if date_headers: schema_parts.append(f"Date Fields: {', '.join(date_headers)}") # Boolean fields bool_headers = [h for h in table_headers if any(word in h.lower() for word in ['is_', 'has_', 'active', 'enabled', 'status'])] if bool_headers: schema_parts.append(f"Boolean Fields: {', '.join(bool_headers)}") # Other fields other_headers = [h for h in table_headers if h not in pk_headers + text_headers + numeric_headers + date_headers + bool_headers] if other_headers: schema_parts.append(f"Other Fields: {', '.join(other_headers)}") return "\n".join(schema_parts) def _format_examples(self, examples: List[Dict[str, Any]]) -> str: """Format retrieved examples for prompt inclusion.""" if not examples: return "No relevant examples found." formatted_examples = [] for i, example in enumerate(examples[:3], 1): # Use top 3 examples relevance = example.get("final_score", example.get("similarity_score", 0)) formatted_examples.append(f"Example {i} (Relevance: {relevance:.2f}):") formatted_examples.append(f" Question: {example['question']}") formatted_examples.append(f" SQL: {example['sql']}") formatted_examples.append(f" Table: {example['table_headers']}") return "\n".join(formatted_examples) def get_prompt_statistics(self) -> Dict[str, Any]: """Get statistics about the prompt engine.""" return { "available_templates": list(self.templates.keys()), "prompts_directory": str(self.prompts_dir), "template_count": len(self.templates) }