Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse filesAdd upscaling to all
app.py
CHANGED
@@ -17,7 +17,6 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
17 |
pipe.enable_xformers_memory_efficient_attention()
|
18 |
pipe = pipe.to(device)
|
19 |
torch.cuda.empty_cache()
|
20 |
-
|
21 |
if refine == "Yes":
|
22 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
23 |
refiner.enable_xformers_memory_efficient_attention()
|
@@ -26,7 +25,6 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
26 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
27 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
28 |
torch.cuda.empty_cache()
|
29 |
-
|
30 |
if upscale == "Yes":
|
31 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
32 |
refiner.enable_xformers_memory_efficient_attention()
|
@@ -40,7 +38,6 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
40 |
else:
|
41 |
if upscale == "Yes":
|
42 |
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
43 |
-
|
44 |
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
45 |
upscaler.enable_xformers_memory_efficient_attention()
|
46 |
upscaler = upscaler.to(device)
|
@@ -49,7 +46,6 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
49 |
torch.cuda.empty_cache()
|
50 |
return upscaled
|
51 |
else:
|
52 |
-
|
53 |
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
54 |
torch.cuda.empty_cache()
|
55 |
return image
|
@@ -67,12 +63,31 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
67 |
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
68 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
69 |
torch.cuda.empty_cache()
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
else:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
if Model == "Disney":
|
77 |
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
|
78 |
disney.enable_xformers_memory_efficient_attention()
|
@@ -86,11 +101,31 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
86 |
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
87 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
88 |
torch.cuda.empty_cache()
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
if Model == "StoryBook":
|
96 |
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
@@ -105,11 +140,33 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
105 |
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
106 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
107 |
torch.cuda.empty_cache()
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
else:
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
if Model == "SemiReal":
|
115 |
semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
|
@@ -124,11 +181,33 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
124 |
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
125 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
126 |
torch.cuda.empty_cache()
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
else:
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
if Model == "Animagine XL 3.0":
|
134 |
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
|
@@ -146,11 +225,33 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
146 |
torch.cuda.empty_cache()
|
147 |
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
148 |
torch.cuda.empty_cache()
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
else:
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
if Model == "SDXL 1.0":
|
156 |
torch.cuda.empty_cache()
|
@@ -171,10 +272,33 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, re
|
|
171 |
torch.cuda.empty_cache()
|
172 |
refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
173 |
torch.cuda.empty_cache()
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
else:
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
return image
|
180 |
|
|
|
17 |
pipe.enable_xformers_memory_efficient_attention()
|
18 |
pipe = pipe.to(device)
|
19 |
torch.cuda.empty_cache()
|
|
|
20 |
if refine == "Yes":
|
21 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
22 |
refiner.enable_xformers_memory_efficient_attention()
|
|
|
25 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
26 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
27 |
torch.cuda.empty_cache()
|
|
|
28 |
if upscale == "Yes":
|
29 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
30 |
refiner.enable_xformers_memory_efficient_attention()
|
|
|
38 |
else:
|
39 |
if upscale == "Yes":
|
40 |
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
|
|
41 |
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
42 |
upscaler.enable_xformers_memory_efficient_attention()
|
43 |
upscaler = upscaler.to(device)
|
|
|
46 |
torch.cuda.empty_cache()
|
47 |
return upscaled
|
48 |
else:
|
|
|
49 |
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
50 |
torch.cuda.empty_cache()
|
51 |
return image
|
|
|
63 |
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
64 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
65 |
torch.cuda.empty_cache()
|
66 |
+
if upscale == "Yes":
|
67 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
68 |
+
refiner.enable_xformers_memory_efficient_attention()
|
69 |
+
refiner = refiner.to(device)
|
70 |
+
torch.cuda.empty_cache()
|
71 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
72 |
+
torch.cuda.empty_cache()
|
73 |
+
return upscaled
|
74 |
+
else:
|
75 |
+
return image
|
76 |
else:
|
77 |
+
if upscale == "Yes":
|
78 |
+
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
79 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
80 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
81 |
+
upscaler = upscaler.to(device)
|
82 |
+
torch.cuda.empty_cache()
|
83 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
84 |
+
torch.cuda.empty_cache()
|
85 |
+
return upscaled
|
86 |
+
else:
|
87 |
+
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
88 |
+
torch.cuda.empty_cache()
|
89 |
+
return image
|
90 |
+
|
91 |
if Model == "Disney":
|
92 |
disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
|
93 |
disney.enable_xformers_memory_efficient_attention()
|
|
|
101 |
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
102 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
103 |
torch.cuda.empty_cache()
|
104 |
+
|
105 |
+
if upscale == "Yes":
|
106 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
107 |
+
refiner.enable_xformers_memory_efficient_attention()
|
108 |
+
refiner = refiner.to(device)
|
109 |
+
torch.cuda.empty_cache()
|
110 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
111 |
+
torch.cuda.empty_cache()
|
112 |
+
return upscaled
|
113 |
+
else:
|
114 |
+
return image
|
115 |
else:
|
116 |
+
if upscale == "Yes":
|
117 |
+
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
118 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
119 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
120 |
+
upscaler = upscaler.to(device)
|
121 |
+
torch.cuda.empty_cache()
|
122 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
return upscaled
|
125 |
+
else:
|
126 |
+
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
127 |
+
torch.cuda.empty_cache()
|
128 |
+
return image
|
129 |
|
130 |
if Model == "StoryBook":
|
131 |
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
|
|
140 |
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
141 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
142 |
torch.cuda.empty_cache()
|
143 |
+
|
144 |
+
if upscale == "Yes":
|
145 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
146 |
+
refiner.enable_xformers_memory_efficient_attention()
|
147 |
+
refiner = refiner.to(device)
|
148 |
+
torch.cuda.empty_cache()
|
149 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
150 |
+
torch.cuda.empty_cache()
|
151 |
+
return upscaled
|
152 |
+
else:
|
153 |
+
return image
|
154 |
else:
|
155 |
+
if upscale == "Yes":
|
156 |
+
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
157 |
+
|
158 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
159 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
160 |
+
upscaler = upscaler.to(device)
|
161 |
+
torch.cuda.empty_cache()
|
162 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
163 |
+
torch.cuda.empty_cache()
|
164 |
+
return upscaled
|
165 |
+
else:
|
166 |
+
|
167 |
+
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
168 |
+
torch.cuda.empty_cache()
|
169 |
+
return image
|
170 |
|
171 |
if Model == "SemiReal":
|
172 |
semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
|
|
|
181 |
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
182 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
183 |
torch.cuda.empty_cache()
|
184 |
+
|
185 |
+
if upscale == "Yes":
|
186 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
187 |
+
refiner.enable_xformers_memory_efficient_attention()
|
188 |
+
refiner = refiner.to(device)
|
189 |
+
torch.cuda.empty_cache()
|
190 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
191 |
+
torch.cuda.empty_cache()
|
192 |
+
return upscaled
|
193 |
+
else:
|
194 |
+
return image
|
195 |
else:
|
196 |
+
if upscale == "Yes":
|
197 |
+
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
198 |
+
|
199 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
200 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
201 |
+
upscaler = upscaler.to(device)
|
202 |
+
torch.cuda.empty_cache()
|
203 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
204 |
+
torch.cuda.empty_cache()
|
205 |
+
return upscaled
|
206 |
+
else:
|
207 |
+
|
208 |
+
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
209 |
+
torch.cuda.empty_cache()
|
210 |
+
return image
|
211 |
|
212 |
if Model == "Animagine XL 3.0":
|
213 |
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
|
|
|
225 |
torch.cuda.empty_cache()
|
226 |
image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
227 |
torch.cuda.empty_cache()
|
228 |
+
|
229 |
+
if upscale == "Yes":
|
230 |
+
animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
231 |
+
animagine.enable_xformers_memory_efficient_attention()
|
232 |
+
animagine = animagine.to(device)
|
233 |
+
torch.cuda.empty_cache()
|
234 |
+
upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
235 |
+
torch.cuda.empty_cache()
|
236 |
+
return upscaled
|
237 |
+
else:
|
238 |
+
return image
|
239 |
else:
|
240 |
+
if upscale == "Yes":
|
241 |
+
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
242 |
+
|
243 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
244 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
245 |
+
upscaler = upscaler.to(device)
|
246 |
+
torch.cuda.empty_cache()
|
247 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
248 |
+
torch.cuda.empty_cache()
|
249 |
+
return upscaled
|
250 |
+
else:
|
251 |
+
|
252 |
+
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
253 |
+
torch.cuda.empty_cache()
|
254 |
+
return image
|
255 |
|
256 |
if Model == "SDXL 1.0":
|
257 |
torch.cuda.empty_cache()
|
|
|
272 |
torch.cuda.empty_cache()
|
273 |
refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
274 |
torch.cuda.empty_cache()
|
275 |
+
|
276 |
+
if upscale == "Yes":
|
277 |
+
sdxl = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
278 |
+
sdxl.enable_xformers_memory_efficient_attention()
|
279 |
+
sdxl = sdxl.to(device)
|
280 |
+
torch.cuda.empty_cache()
|
281 |
+
upscaled = sdxl(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
282 |
+
torch.cuda.empty_cache()
|
283 |
+
return upscaled
|
284 |
+
else:
|
285 |
+
return refined
|
286 |
else:
|
287 |
+
if upscale == "Yes":
|
288 |
+
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
289 |
+
|
290 |
+
upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
|
291 |
+
upscaler.enable_xformers_memory_efficient_attention()
|
292 |
+
upscaler = upscaler.to(device)
|
293 |
+
torch.cuda.empty_cache()
|
294 |
+
upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
|
295 |
+
torch.cuda.empty_cache()
|
296 |
+
return upscaled
|
297 |
+
else:
|
298 |
+
|
299 |
+
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
300 |
+
torch.cuda.empty_cache()
|
301 |
+
|
302 |
|
303 |
return image
|
304 |
|