Update app.py
Browse files
app.py
CHANGED
|
@@ -3,11 +3,11 @@ import modin.pandas as pd
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
-
from diffusers import
|
| 7 |
-
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
pipe =
|
| 11 |
pipe = pipe.to(device)
|
| 12 |
|
| 13 |
def resize(value,img):
|
|
@@ -15,17 +15,16 @@ def resize(value,img):
|
|
| 15 |
img = img.resize((value,value))
|
| 16 |
return img
|
| 17 |
|
| 18 |
-
def infer(source_img, prompt, steps, seed):
|
| 19 |
generator = torch.Generator(device).manual_seed(seed)
|
| 20 |
source_image = resize(512, source_img)
|
| 21 |
source_image.save('source.png')
|
| 22 |
-
image = pipe(prompt, image=source_image, strength=
|
| 23 |
return image
|
| 24 |
|
| 25 |
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"),
|
| 26 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
| 27 |
-
#gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
|
| 28 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|
| 29 |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
| 30 |
-
|
| 31 |
outputs='image', title = "Stable Diffusion XL 1.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
+
from diffusers import AutoPipelineForImage2Image
|
| 7 |
+
from diffusers.utils import load_image
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 11 |
pipe = pipe.to(device)
|
| 12 |
|
| 13 |
def resize(value,img):
|
|
|
|
| 15 |
img = img.resize((value,value))
|
| 16 |
return img
|
| 17 |
|
| 18 |
+
def infer(source_img, prompt, steps, seed, Strength):
|
| 19 |
generator = torch.Generator(device).manual_seed(seed)
|
| 20 |
source_image = resize(512, source_img)
|
| 21 |
source_image.save('source.png')
|
| 22 |
+
image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0]
|
| 23 |
return image
|
| 24 |
|
| 25 |
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"),
|
| 26 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
|
|
|
| 27 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|
| 28 |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
| 29 |
+
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
|
| 30 |
outputs='image', title = "Stable Diffusion XL 1.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
|