Upload 3 files
Browse files- app.py +27 -0
- house_price_model.pkl +3 -0
- model.py +26 -0
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load Model
|
6 |
+
with open("house_price_model.pkl", "rb") as f:
|
7 |
+
model = pickle.load(f)
|
8 |
+
|
9 |
+
# Streamlit App
|
10 |
+
st.title("π House Price Prediction")
|
11 |
+
st.write("Enter house details to predict price")
|
12 |
+
|
13 |
+
# Input Fields
|
14 |
+
CRIM = st.number_input("Crime Rate", 0.0, 100.0, step=0.1)
|
15 |
+
ZN = st.number_input("Proportion of Residential Land", 0.0, 100.0, step=0.1)
|
16 |
+
INDUS = st.number_input("Proportion of Non-Retail Business Acres", 0.0, 50.0, step=0.1)
|
17 |
+
CHAS = st.selectbox("Charles River (1: Yes, 0: No)", [0, 1])
|
18 |
+
NOX = st.number_input("Nitrogen Oxide Concentration", 0.0, 1.0, step=0.01)
|
19 |
+
RM = st.number_input("Average Rooms per Dwelling", 1.0, 10.0, step=0.1)
|
20 |
+
AGE = st.number_input("Proportion of Owner-Occupied Units Built Before 1940", 0.0, 100.0, step=0.1)
|
21 |
+
DIS = st.number_input("Weighted Distance to Employment Centers", 0.0, 10.0, step=0.1) # Missing Feature Added β
|
22 |
+
|
23 |
+
# Prediction
|
24 |
+
if st.button("Predict"):
|
25 |
+
features = np.array([[CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS]]) # Now 8 features β
|
26 |
+
prediction = model.predict(features)
|
27 |
+
st.success(f"Estimated House Price: ${prediction[0]:,.2f}")
|
house_price_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6b674affa293155e18bffdb6764ae6ed41de7f461d64bd23a0d97d958d1355f
|
3 |
+
size 709
|
model.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from sklearn.datasets import fetch_california_housing
|
7 |
+
|
8 |
+
# Load California Housing Dataset
|
9 |
+
data = fetch_california_housing()
|
10 |
+
df = pd.DataFrame(data.data, columns=data.feature_names)
|
11 |
+
df['PRICE'] = data.target
|
12 |
+
|
13 |
+
# Prepare Data
|
14 |
+
X = df.drop(columns=['PRICE'])
|
15 |
+
y = df['PRICE']
|
16 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
17 |
+
|
18 |
+
# Train Model
|
19 |
+
model = LinearRegression()
|
20 |
+
model.fit(X_train, y_train)
|
21 |
+
|
22 |
+
# Save Model
|
23 |
+
with open("house_price_model.pkl", "wb") as f:
|
24 |
+
pickle.dump(model, f)
|
25 |
+
|
26 |
+
print("β
Model trained and saved as 'house_price_model.pkl'")
|