import streamlit as st import pickle import numpy as np # Load Model with open("house_price_model.pkl", "rb") as f: model = pickle.load(f) # Streamlit App st.title("🏠 House Price Prediction") st.write("Enter house details to predict price") # Input Fields CRIM = st.number_input("Crime Rate", 0.0, 100.0, step=0.1) ZN = st.number_input("Proportion of Residential Land", 0.0, 100.0, step=0.1) INDUS = st.number_input("Proportion of Non-Retail Business Acres", 0.0, 50.0, step=0.1) CHAS = st.selectbox("Charles River (1: Yes, 0: No)", [0, 1]) NOX = st.number_input("Nitrogen Oxide Concentration", 0.0, 1.0, step=0.01) RM = st.number_input("Average Rooms per Dwelling", 1.0, 10.0, step=0.1) AGE = st.number_input("Proportion of Owner-Occupied Units Built Before 1940", 0.0, 100.0, step=0.1) DIS = st.number_input("Weighted Distance to Employment Centers", 0.0, 10.0, step=0.1) # Missing Feature Added ✅ # Prediction if st.button("Predict"): features = np.array([[CRIM, ZN, INDUS, CHAS, NOX, RM, AGE, DIS]]) # Now 8 features ✅ prediction = model.predict(features) st.success(f"Estimated House Price: ${prediction[0]:,.2f}")