Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from diffusers import
|
4 |
from diffusers.utils import export_to_video
|
5 |
|
6 |
-
# Load the Wan2.1 text-to-video pipeline (1.3B version) with half
|
|
|
|
|
7 |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
8 |
-
|
9 |
-
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
|
10 |
-
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16)
|
11 |
-
# (By default, the pipeline is on CPU since no .to("cuda") is called)
|
12 |
|
13 |
st.title("Wan2.1 Text-to-Video Generator")
|
14 |
prompt = st.text_input("Enter a text prompt for the video:")
|
15 |
frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24)
|
|
|
16 |
if st.button("Generate Video") and prompt:
|
17 |
with st.spinner("Generating video... this may take a while on CPU"):
|
18 |
-
# Run the pipeline to generate video frames
|
19 |
result = pipe(prompt=prompt, height=480, width=832, num_frames=frames, num_inference_steps=20)
|
20 |
-
video_frames = result.frames #
|
21 |
-
|
22 |
-
|
23 |
st.video("output.mp4")
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from diffusers import WanPipeline
|
4 |
from diffusers.utils import export_to_video
|
5 |
|
6 |
+
# Load the Wan2.1 text-to-video pipeline (1.3B version) with half-precision weights
|
7 |
+
st.write("Loading model... (first run may take a few minutes)")
|
8 |
+
|
9 |
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
10 |
+
pipe = WanPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
|
|
|
|
|
|
11 |
|
12 |
st.title("Wan2.1 Text-to-Video Generator")
|
13 |
prompt = st.text_input("Enter a text prompt for the video:")
|
14 |
frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24)
|
15 |
+
|
16 |
if st.button("Generate Video") and prompt:
|
17 |
with st.spinner("Generating video... this may take a while on CPU"):
|
|
|
18 |
result = pipe(prompt=prompt, height=480, width=832, num_frames=frames, num_inference_steps=20)
|
19 |
+
video_frames = result.frames # List of PIL images
|
20 |
+
export_to_video(video_frames, "output.mp4", fps=8)
|
21 |
+
|
22 |
st.video("output.mp4")
|