Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from diffusers import AutoencoderKLWan, WanPipeline
|
4 |
+
from diffusers.utils import export_to_video
|
5 |
+
|
6 |
+
# Load the Wan2.1 text-to-video pipeline (1.3B version) with half precision weights
|
7 |
+
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
8 |
+
st.write("Downloading and loading model... (first run may take a few minutes)")
|
9 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
|
10 |
+
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.float16)
|
11 |
+
# (By default, the pipeline is on CPU since no .to("cuda") is called)
|
12 |
+
|
13 |
+
st.title("Wan2.1 Text-to-Video Generator")
|
14 |
+
prompt = st.text_input("Enter a text prompt for the video:")
|
15 |
+
frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24)
|
16 |
+
if st.button("Generate Video") and prompt:
|
17 |
+
with st.spinner("Generating video... this may take a while on CPU"):
|
18 |
+
# Run the pipeline to generate video frames
|
19 |
+
result = pipe(prompt=prompt, height=480, width=832, num_frames=frames, num_inference_steps=20)
|
20 |
+
video_frames = result.frames # list of PIL images
|
21 |
+
# Save frames as video file
|
22 |
+
export_to_video(video_frames, "output.mp4", fps=8) # using a lower FPS for a short video
|
23 |
+
st.video("output.mp4")
|