import streamlit as st import torch from diffusers import StableVideoDiffusionPipeline from diffusers.utils import export_to_video # Load the video generation pipeline st.write("Loading model... (first run may take a few minutes)") model_id = "stabilityai/stable-video-diffusion-img2vid" pipe = StableVideoDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) st.title("Text-to-Video Generator") prompt = st.text_input("Enter a text prompt for the video:") frames = st.slider("Number of frames (video length)", min_value=8, max_value=81, value=24) if st.button("Generate Video") and prompt: with st.spinner("Generating video... this may take a while on CPU"): result = pipe(prompt=prompt, num_frames=frames, num_inference_steps=20) video_frames = result.frames # List of PIL images export_to_video(video_frames, "output.mp4", fps=8) st.video("output.mp4")