import streamlit as st import torch from diffusers import DiffusionPipeline import tempfile # Load the text-to-video model st.write("Loading model... (first run may take a few minutes)") model_id = "damo-vilab/text-to-video-ms-1.7b" pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.to("cpu") # Stay on CPU since we don’t have a GPU st.title("Text-to-Video Generator") prompt = st.text_input("Enter a text prompt for the video:") frames = st.slider("Number of frames (video length)", min_value=8, max_value=24, value=16) if st.button("Generate Video") and prompt: with st.spinner("Generating video... this may take a while on CPU"): result = pipe(prompt=prompt, num_frames=frames, num_inference_steps=20) video_frames = result.frames # List of PIL images # Save frames as video file with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file: video_path = temp_file.name result.export_to_video(video_path, fps=8) st.video(video_path)