File size: 7,918 Bytes
a58bc70 152fa4b f8f9179 a58bc70 f8f9179 a58bc70 f8f9179 2be9d10 ba086ac 2be9d10 f8f9179 57e2f3b f8f9179 2be9d10 a58bc70 f8f9179 a58bc70 2be9d10 a58bc70 2be9d10 5f45471 f8f9179 2be9d10 f8f9179 2be9d10 5f45471 2be9d10 57e2f3b 34f5ac3 57e2f3b 34f5ac3 57e2f3b 34f5ac3 57e2f3b 34f5ac3 57e2f3b 34f5ac3 a58bc70 34f5ac3 f8f9179 a58bc70 34f5ac3 2be9d10 34f5ac3 f8f9179 34f5ac3 57e2f3b 34f5ac3 a58bc70 f8f9179 152fa4b 57e2f3b 152fa4b 85e6132 152fa4b 57e2f3b 2be9d10 f8f9179 2be9d10 0fc8804 f8f9179 34f5ac3 0fc8804 f8f9179 2be9d10 f8f9179 2be9d10 f8f9179 2be9d10 57e2f3b f8f9179 57e2f3b 0fc8804 57e2f3b 34f5ac3 0fc8804 85e6132 152fa4b f8f9179 34f5ac3 77e129a 2be9d10 0fc8804 a58bc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import cv2 as cv
import numpy as np
import gradio as gr
from pathlib import Path
from collections import Counter, defaultdict
from huggingface_hub import hf_hub_download
from facial_fer_model import FacialExpressionRecog
from yunet import YuNet
# Download ONNX-modellen
FD_MODEL_PATH = hf_hub_download(repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx")
FER_MODEL_PATH = hf_hub_download(repo_id="opencv/facial_expression_recognition", filename="facial_expression_recognition_mobilefacenet_2022july.onnx")
backend_id = cv.dnn.DNN_BACKEND_OPENCV
target_id = cv.dnn.DNN_TARGET_CPU
fer_model = FacialExpressionRecog(modelPath=FER_MODEL_PATH, backendId=backend_id, targetId=target_id)
detect_model = YuNet(modelPath=FD_MODEL_PATH)
# EN -> NL mapping
EN_TO_NL = {
"neutral": "Neutraal",
"happy": "Blij",
"sad": "Verdrietig",
"surprise": "Verrast",
"angry": "Boos",
"anger": "Boos",
"disgust": "Walging",
"fear": "Bang",
"contempt": "Minachting",
"unknown": "Onbekend",
}
def to_dutch(label: str) -> str:
if not label:
return "Onbekend"
key = label.strip().lower()
return EN_TO_NL.get(key, label)
# In-memory statistieken
emotion_stats = defaultdict(int)
def visualize(image, det_res, fer_res):
output = image.copy()
landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
for det, fer_type in zip(det_res, fer_res):
bbox = det[0:4].astype(np.int32)
fer_type_str_nl = to_dutch(FacialExpressionRecog.getDesc(fer_type))
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
cv.putText(output, fer_type_str_nl, (bbox[0], max(0, bbox[1] - 10)),
cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv.LINE_AA)
landmarks = det[4:14].astype(np.int32).reshape((5, 2))
for idx, landmark in enumerate(landmarks):
cv.circle(output, landmark, 2, landmark_color[idx], 2)
return output
def summarize_emotions(fer_res):
if not fer_res:
return "## **Geen gezicht gedetecteerd**"
names_nl = [to_dutch(FacialExpressionRecog.getDesc(x)) for x in fer_res]
counts = Counter(names_nl).most_common()
top = counts[0][0]
details = ", ".join([f"{name} ({n})" for name, n in counts])
return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
# --- Staafdiagram tekenen met OpenCV (geen matplotlib nodig) ---
def draw_bar_chart_cv(stats: dict, width=640, height=320):
img = np.full((height, width, 3), 255, dtype=np.uint8)
cv.putText(img, "Live emotie-statistieken", (12, 28), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv.LINE_AA)
if not stats:
cv.putText(img, "Nog geen statistieken", (12, height//2), cv.FONT_HERSHEY_SIMPLEX, 0.9, (128, 128, 128), 2, cv.LINE_AA)
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
left, right, top, bottom = 60, 20, 50, 40
plot_w = width - left - right
plot_h = height - top - bottom
origin = (left, height - bottom)
cv.line(img, origin, (left + plot_w, height - bottom), (0, 0, 0), 2)
cv.line(img, origin, (left, height - bottom - plot_h), (0, 0, 0), 2)
labels = list(stats.keys())
values = [stats[k] for k in labels]
max_val = max(values) if max(values) > 0 else 1
n = len(labels)
gap = 12
bar_w = max(10, int((plot_w - gap * (n + 1)) / max(1, n)))
for i, (lab, val) in enumerate(zip(labels, values)):
x1 = left + gap + i * (bar_w + gap)
x2 = x1 + bar_w
h_px = int((val / max_val) * (plot_h - 10))
y1 = height - bottom - h_px
y2 = height - bottom - 1
cv.rectangle(img, (x1, y1), (x2, y2), (0, 170, 60), -1)
cv.putText(img, str(val), (x1 + 2, y1 - 6), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 90, 30), 1, cv.LINE_AA)
show_lab = lab if len(lab) <= 10 else lab[:9] + "…"
(tw, th), _ = cv.getTextSize(show_lab, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
tx = x1 + (bar_w - tw) // 2
ty = height - bottom + th + 12
cv.putText(img, show_lab, (tx, ty), cv.FONT_HERSHEY_SIMPLEX, 0.5, (40, 40, 40), 1, cv.LINE_AA)
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
def process_image(input_image):
"""Helper: run detectie en retourneer (output_img, fer_res as list of ints)."""
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
h, w, _ = image.shape
detect_model.setInputSize([w, h])
dets = detect_model.infer(image)
if dets is None:
return cv.cvtColor(image, cv.COLOR_BGR2RGB), []
fer_res = [fer_model.infer(image, face_points[:-1])[0] for face_points in dets]
output = visualize(image, dets, fer_res)
return cv.cvtColor(output, cv.COLOR_BGR2RGB), fer_res
def detect_expression(input_image):
"""Versie die WÉL statistieken bijwerkt (gebruik voor 'Verstuur')."""
output_img, fer_res = process_image(input_image)
emotion_md = summarize_emotions(fer_res)
# update stats alleen hier:
names_nl = [to_dutch(FacialExpressionRecog.getDesc(x)) for x in fer_res]
for name in names_nl:
emotion_stats[name] += 1
stats_plot = draw_bar_chart_cv(emotion_stats)
return output_img, emotion_md, stats_plot
def detect_expression_no_stats(input_image):
"""Versie die GEEN statistieken bijwerkt (gebruik voor gr.Examples & caching)."""
output_img, fer_res = process_image(input_image)
emotion_md = summarize_emotions(fer_res)
# géén update van emotion_stats
stats_plot = draw_bar_chart_cv(emotion_stats) # toon huidige stand (kan leeg zijn)
return output_img, emotion_md, stats_plot
# Voorbeelden automatisch laden
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
EXAMPLES_DIR = Path("examples")
if EXAMPLES_DIR.exists() and EXAMPLES_DIR.is_dir():
example_paths = [str(p) for p in sorted(EXAMPLES_DIR.iterdir()) if Path(p).suffix.lower() in IMAGE_EXTS]
else:
example_paths = []
example_list = [[p] for p in example_paths]
CACHE_EXAMPLES = bool(example_list)
# CSS (groene emotietekst)
custom_css = """
#emotie-uitslag { color: #16a34a; }
#emotie-uitslag h1, #emotie-uitslag h2, #emotie-uitslag h3 { margin: 0.25rem 0; }
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("## Herkenning van gezichtsuitdrukkingen ")
gr.Markdown("Detecteert gezichten en herkent gezichtsuitdrukkingen ")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", label="Afbeelding uploaden")
with gr.Row():
submit_btn = gr.Button("Verstuur", variant="primary")
clear_btn = gr.Button("Wissen")
with gr.Column():
output_image = gr.Image(type="numpy", label="Resultaat gezichtsuitdrukking")
emotion_md = gr.Markdown("## **Nog geen resultaat**", elem_id="emotie-uitslag")
stats_image = gr.Image(label="Statistieken", type="numpy")
# Clear-helpers
def clear_all_on_new():
return None, "## **Nog geen resultaat**", draw_bar_chart_cv(emotion_stats)
def clear_all_button():
return None, None, "## **Nog geen resultaat**", draw_bar_chart_cv(emotion_stats)
input_image.change(fn=clear_all_on_new, outputs=[output_image, emotion_md, stats_image])
submit_btn.click(fn=detect_expression, inputs=input_image, outputs=[output_image, emotion_md, stats_image])
clear_btn.click(fn=clear_all_button, outputs=[input_image, output_image, emotion_md, stats_image])
gr.Markdown("Klik op een voorbeeld om te testen.")
# BELANGRIJK: gebruik de 'no_stats'-functie voor Examples zodat deze NIET meetellen
gr.Examples(
examples=example_list,
inputs=input_image,
outputs=[output_image, emotion_md, stats_image],
fn=detect_expression_no_stats, # <- telt NIET mee
examples_per_page=20,
cache_examples=CACHE_EXAMPLES
)
if __name__ == "__main__":
demo.launch()
|