Marcel0123 commited on
Commit
76b67b7
·
verified ·
1 Parent(s): 2e233c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +131 -42
app.py CHANGED
@@ -57,18 +57,80 @@ def to_dutch_lower(label: str) -> str:
57
  # In-memory statistieken
58
  emotion_stats = defaultdict(int)
59
 
60
- def visualize(image, det_res, fer_res):
61
- """Tekent bbox + NL-lowercase emotielabel op de output."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  output = image.copy()
63
  landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
64
- for det, fer_type in zip(det_res, fer_res):
65
  bbox = det[0:4].astype(np.int32)
66
- fer_type_str_nl = to_dutch_lower(FacialExpressionRecog.getDesc(fer_type))
 
 
 
67
 
68
  cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
69
  cv.putText(
70
  output,
71
- fer_type_str_nl,
72
  (bbox[0], max(0, bbox[1] - 10)),
73
  cv.FONT_HERSHEY_SIMPLEX,
74
  0.7,
@@ -82,16 +144,73 @@ def visualize(image, det_res, fer_res):
82
  cv.circle(output, landmark, 2, landmark_color[idx], 2)
83
  return output
84
 
85
- def summarize_emotions(fer_res):
86
- """Maakt de grote groene NL-lowercase samenvatting."""
87
- if not fer_res:
88
  return "## **geen gezicht gedetecteerd**"
89
- names_nl = [to_dutch_lower(FacialExpressionRecog.getDesc(x)) for x in fer_res]
90
- counts = Counter(names_nl).most_common()
91
- top = counts[0][0]
92
- details = ", ".join([f"{name} ({n})" for name, n in counts])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  # --- Staafdiagram tekenen met OpenCV (geen matplotlib nodig) ---
96
  def draw_bar_chart_cv(stats: dict, width=640, height=320):
97
  img = np.full((height, width, 3), 255, dtype=np.uint8)
@@ -133,36 +252,6 @@ def draw_bar_chart_cv(stats: dict, width=640, height=320):
133
 
134
  return cv.cvtColor(img, cv.COLOR_BGR2RGB)
135
 
136
- def process_image(input_image):
137
- """Helper: run detectie en retourneer (output_img, fer_res as list[int])."""
138
- image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
139
- h, w, _ = image.shape
140
- detect_model.setInputSize([w, h])
141
- dets = detect_model.infer(image)
142
- if dets is None:
143
- return cv.cvtColor(image, cv.COLOR_BGR2RGB), []
144
- fer_res = [fer_model.infer(image, face_points[:-1])[0] for face_points in dets]
145
- output = visualize(image, dets, fer_res)
146
- return cv.cvtColor(output, cv.COLOR_BGR2RGB), fer_res
147
-
148
- def detect_expression(input_image):
149
- """Versie die WÉL statistieken bijwerkt (gebruik voor 'Verstuur')."""
150
- output_img, fer_res = process_image(input_image)
151
- emotion_md = summarize_emotions(fer_res)
152
- # update stats in NL-lowercase
153
- names_nl = [to_dutch_lower(FacialExpressionRecog.getDesc(x)) for x in fer_res]
154
- for name in names_nl:
155
- emotion_stats[name] += 1
156
- stats_plot = draw_bar_chart_cv(emotion_stats)
157
- return output_img, emotion_md, stats_plot
158
-
159
- def detect_expression_no_stats(input_image):
160
- """Versie die GEEN statistieken bijwerkt (gebruik voor gr.Examples & caching)."""
161
- output_img, fer_res = process_image(input_image)
162
- emotion_md = summarize_emotions(fer_res)
163
- # géén stats update en ook géén stats_image teruggeven
164
- return output_img, emotion_md
165
-
166
  # Voorbeelden automatisch laden
167
  IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
168
  EXAMPLES_DIR = Path("examples")
 
57
  # In-memory statistieken
58
  emotion_stats = defaultdict(int)
59
 
60
+ # ---------- Confidence helpers ----------
61
+ def _format_pct(conf):
62
+ """Format confidence naar '82%' (int). Conf kan in [0,1] of [0,100] of None."""
63
+ if conf is None:
64
+ return None
65
+ try:
66
+ c = float(conf)
67
+ except Exception:
68
+ return None
69
+ if c <= 1.0:
70
+ c *= 100.0
71
+ c = max(0.0, min(100.0, c))
72
+ return f"{int(round(c))}%"
73
+
74
+ def _parse_infer_output(result):
75
+ """
76
+ Probeer robuust (label_idx, confidence) uit infer-output te halen.
77
+ Ondersteunt:
78
+ - (label, score) tuple/list
79
+ - [probs...] ndarray (neemt argmax + max)
80
+ - [label] of scalar -> (label, None)
81
+ """
82
+ # numpy array?
83
+ if isinstance(result, np.ndarray):
84
+ arr = result
85
+ if arr.ndim == 1 and arr.size > 1:
86
+ idx = int(np.argmax(arr))
87
+ conf = float(arr[idx])
88
+ return idx, conf
89
+ elif arr.size == 1:
90
+ return int(arr.flat[0]), None
91
+ else:
92
+ # onbekende vorm
93
+ try:
94
+ idx = int(arr[0])
95
+ return idx, None
96
+ except Exception:
97
+ return 0, None
98
+
99
+ # list/tuple?
100
+ if isinstance(result, (list, tuple)):
101
+ if len(result) >= 2 and isinstance(result[1], (float, np.floating, int, np.integer)):
102
+ try:
103
+ return int(result[0]), float(result[1])
104
+ except Exception:
105
+ pass
106
+ if len(result) >= 1:
107
+ try:
108
+ return int(result[0]), None
109
+ except Exception:
110
+ return 0, None
111
+
112
+ # scalar label
113
+ try:
114
+ return int(result), None
115
+ except Exception:
116
+ return 0, None
117
+ # ---------------------------------------
118
+
119
+ def visualize(image, det_res, labels, confs):
120
+ """Tekent bbox + NL-lowercase emotielabel + confidence op de output."""
121
  output = image.copy()
122
  landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
123
+ for i, (det, lab) in enumerate(zip(det_res, labels)):
124
  bbox = det[0:4].astype(np.int32)
125
+ label_en = FacialExpressionRecog.getDesc(lab)
126
+ fer_type_str_nl = to_dutch_lower(label_en)
127
+ pct = _format_pct(confs[i] if i < len(confs) else None)
128
+ txt = f"{fer_type_str_nl}" + (f" {pct}" if pct else "")
129
 
130
  cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
131
  cv.putText(
132
  output,
133
+ txt,
134
  (bbox[0], max(0, bbox[1] - 10)),
135
  cv.FONT_HERSHEY_SIMPLEX,
136
  0.7,
 
144
  cv.circle(output, landmark, 2, landmark_color[idx], 2)
145
  return output
146
 
147
+ def summarize_emotions(labels, confs):
148
+ """Maakt de grote groene NL-lowercase samenvatting met gemiddelden per emotie."""
149
+ if not labels:
150
  return "## **geen gezicht gedetecteerd**"
151
+
152
+ names_nl = []
153
+ for lab in labels:
154
+ names_nl.append(to_dutch_lower(FacialExpressionRecog.getDesc(lab)))
155
+
156
+ # tel per emotie + verzamel confidences
157
+ counts = Counter(names_nl)
158
+ conf_bucket = defaultdict(list)
159
+ for i, name in enumerate(names_nl):
160
+ if i < len(confs) and confs[i] is not None:
161
+ conf_bucket[name].append(float(confs[i]))
162
+
163
+ # top-emotie op basis van count
164
+ top = counts.most_common(1)[0][0]
165
+
166
+ # details: "blij (2, gem. 79%)"
167
+ parts = []
168
+ # sorteer op frequentie aflopend, dan alfabetisch
169
+ for name, n in sorted(counts.items(), key=lambda kv: (-kv[1], kv[0])):
170
+ if conf_bucket[name]:
171
+ avg = sum(conf_bucket[name]) / len(conf_bucket[name])
172
+ parts.append(f"{name} ({n}, gem. {_format_pct(avg)})")
173
+ else:
174
+ parts.append(f"{name} ({n})")
175
+ details = ", ".join(parts)
176
+
177
  return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
178
 
179
+ def process_image(input_image):
180
+ """Helper: run detectie en retourneer (output_img, labels[int], confs[float|None])."""
181
+ image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
182
+ h, w, _ = image.shape
183
+ detect_model.setInputSize([w, h])
184
+ dets = detect_model.infer(image)
185
+ if dets is None:
186
+ return cv.cvtColor(image, cv.COLOR_BGR2RGB), [], [], None
187
+ labels, confs = [], []
188
+ for face_points in dets:
189
+ raw = fer_model.infer(image, face_points[:-1])
190
+ lab, conf = _parse_infer_output(raw)
191
+ labels.append(lab)
192
+ confs.append(conf)
193
+ output = visualize(image, dets, labels, confs)
194
+ return cv.cvtColor(output, cv.COLOR_BGR2RGB), labels, confs, dets
195
+
196
+ def detect_expression(input_image):
197
+ """Versie die WÉL statistieken bijwerkt (gebruik voor 'Verstuur')."""
198
+ output_img, labels, confs, _ = process_image(input_image)
199
+ emotion_md = summarize_emotions(labels, confs)
200
+ # update stats in NL-lowercase
201
+ for lab in labels:
202
+ name_nl = to_dutch_lower(FacialExpressionRecog.getDesc(lab))
203
+ emotion_stats[name_nl] += 1
204
+ stats_plot = draw_bar_chart_cv(emotion_stats)
205
+ return output_img, emotion_md, stats_plot
206
+
207
+ def detect_expression_no_stats(input_image):
208
+ """Versie die GEEN statistieken bijwerkt (gebruik voor gr.Examples & caching)."""
209
+ output_img, labels, confs, _ = process_image(input_image)
210
+ emotion_md = summarize_emotions(labels, confs)
211
+ # géén stats update en ook géén stats_image teruggeven
212
+ return output_img, emotion_md
213
+
214
  # --- Staafdiagram tekenen met OpenCV (geen matplotlib nodig) ---
215
  def draw_bar_chart_cv(stats: dict, width=640, height=320):
216
  img = np.full((height, width, 3), 255, dtype=np.uint8)
 
252
 
253
  return cv.cvtColor(img, cv.COLOR_BGR2RGB)
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
  # Voorbeelden automatisch laden
256
  IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
257
  EXAMPLES_DIR = Path("examples")