Update app.py
Browse files
app.py
CHANGED
@@ -57,18 +57,80 @@ def to_dutch_lower(label: str) -> str:
|
|
57 |
# In-memory statistieken
|
58 |
emotion_stats = defaultdict(int)
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
output = image.copy()
|
63 |
landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
|
64 |
-
for det,
|
65 |
bbox = det[0:4].astype(np.int32)
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
|
69 |
cv.putText(
|
70 |
output,
|
71 |
-
|
72 |
(bbox[0], max(0, bbox[1] - 10)),
|
73 |
cv.FONT_HERSHEY_SIMPLEX,
|
74 |
0.7,
|
@@ -82,16 +144,73 @@ def visualize(image, det_res, fer_res):
|
|
82 |
cv.circle(output, landmark, 2, landmark_color[idx], 2)
|
83 |
return output
|
84 |
|
85 |
-
def summarize_emotions(
|
86 |
-
"""Maakt de grote groene NL-lowercase samenvatting."""
|
87 |
-
if not
|
88 |
return "## **geen gezicht gedetecteerd**"
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# --- Staafdiagram tekenen met OpenCV (geen matplotlib nodig) ---
|
96 |
def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
97 |
img = np.full((height, width, 3), 255, dtype=np.uint8)
|
@@ -133,36 +252,6 @@ def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
|
133 |
|
134 |
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
135 |
|
136 |
-
def process_image(input_image):
|
137 |
-
"""Helper: run detectie en retourneer (output_img, fer_res as list[int])."""
|
138 |
-
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
139 |
-
h, w, _ = image.shape
|
140 |
-
detect_model.setInputSize([w, h])
|
141 |
-
dets = detect_model.infer(image)
|
142 |
-
if dets is None:
|
143 |
-
return cv.cvtColor(image, cv.COLOR_BGR2RGB), []
|
144 |
-
fer_res = [fer_model.infer(image, face_points[:-1])[0] for face_points in dets]
|
145 |
-
output = visualize(image, dets, fer_res)
|
146 |
-
return cv.cvtColor(output, cv.COLOR_BGR2RGB), fer_res
|
147 |
-
|
148 |
-
def detect_expression(input_image):
|
149 |
-
"""Versie die WÉL statistieken bijwerkt (gebruik voor 'Verstuur')."""
|
150 |
-
output_img, fer_res = process_image(input_image)
|
151 |
-
emotion_md = summarize_emotions(fer_res)
|
152 |
-
# update stats in NL-lowercase
|
153 |
-
names_nl = [to_dutch_lower(FacialExpressionRecog.getDesc(x)) for x in fer_res]
|
154 |
-
for name in names_nl:
|
155 |
-
emotion_stats[name] += 1
|
156 |
-
stats_plot = draw_bar_chart_cv(emotion_stats)
|
157 |
-
return output_img, emotion_md, stats_plot
|
158 |
-
|
159 |
-
def detect_expression_no_stats(input_image):
|
160 |
-
"""Versie die GEEN statistieken bijwerkt (gebruik voor gr.Examples & caching)."""
|
161 |
-
output_img, fer_res = process_image(input_image)
|
162 |
-
emotion_md = summarize_emotions(fer_res)
|
163 |
-
# géén stats update en ook géén stats_image teruggeven
|
164 |
-
return output_img, emotion_md
|
165 |
-
|
166 |
# Voorbeelden automatisch laden
|
167 |
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
|
168 |
EXAMPLES_DIR = Path("examples")
|
|
|
57 |
# In-memory statistieken
|
58 |
emotion_stats = defaultdict(int)
|
59 |
|
60 |
+
# ---------- Confidence helpers ----------
|
61 |
+
def _format_pct(conf):
|
62 |
+
"""Format confidence naar '82%' (int). Conf kan in [0,1] of [0,100] of None."""
|
63 |
+
if conf is None:
|
64 |
+
return None
|
65 |
+
try:
|
66 |
+
c = float(conf)
|
67 |
+
except Exception:
|
68 |
+
return None
|
69 |
+
if c <= 1.0:
|
70 |
+
c *= 100.0
|
71 |
+
c = max(0.0, min(100.0, c))
|
72 |
+
return f"{int(round(c))}%"
|
73 |
+
|
74 |
+
def _parse_infer_output(result):
|
75 |
+
"""
|
76 |
+
Probeer robuust (label_idx, confidence) uit infer-output te halen.
|
77 |
+
Ondersteunt:
|
78 |
+
- (label, score) tuple/list
|
79 |
+
- [probs...] ndarray (neemt argmax + max)
|
80 |
+
- [label] of scalar -> (label, None)
|
81 |
+
"""
|
82 |
+
# numpy array?
|
83 |
+
if isinstance(result, np.ndarray):
|
84 |
+
arr = result
|
85 |
+
if arr.ndim == 1 and arr.size > 1:
|
86 |
+
idx = int(np.argmax(arr))
|
87 |
+
conf = float(arr[idx])
|
88 |
+
return idx, conf
|
89 |
+
elif arr.size == 1:
|
90 |
+
return int(arr.flat[0]), None
|
91 |
+
else:
|
92 |
+
# onbekende vorm
|
93 |
+
try:
|
94 |
+
idx = int(arr[0])
|
95 |
+
return idx, None
|
96 |
+
except Exception:
|
97 |
+
return 0, None
|
98 |
+
|
99 |
+
# list/tuple?
|
100 |
+
if isinstance(result, (list, tuple)):
|
101 |
+
if len(result) >= 2 and isinstance(result[1], (float, np.floating, int, np.integer)):
|
102 |
+
try:
|
103 |
+
return int(result[0]), float(result[1])
|
104 |
+
except Exception:
|
105 |
+
pass
|
106 |
+
if len(result) >= 1:
|
107 |
+
try:
|
108 |
+
return int(result[0]), None
|
109 |
+
except Exception:
|
110 |
+
return 0, None
|
111 |
+
|
112 |
+
# scalar label
|
113 |
+
try:
|
114 |
+
return int(result), None
|
115 |
+
except Exception:
|
116 |
+
return 0, None
|
117 |
+
# ---------------------------------------
|
118 |
+
|
119 |
+
def visualize(image, det_res, labels, confs):
|
120 |
+
"""Tekent bbox + NL-lowercase emotielabel + confidence op de output."""
|
121 |
output = image.copy()
|
122 |
landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
|
123 |
+
for i, (det, lab) in enumerate(zip(det_res, labels)):
|
124 |
bbox = det[0:4].astype(np.int32)
|
125 |
+
label_en = FacialExpressionRecog.getDesc(lab)
|
126 |
+
fer_type_str_nl = to_dutch_lower(label_en)
|
127 |
+
pct = _format_pct(confs[i] if i < len(confs) else None)
|
128 |
+
txt = f"{fer_type_str_nl}" + (f" {pct}" if pct else "")
|
129 |
|
130 |
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
|
131 |
cv.putText(
|
132 |
output,
|
133 |
+
txt,
|
134 |
(bbox[0], max(0, bbox[1] - 10)),
|
135 |
cv.FONT_HERSHEY_SIMPLEX,
|
136 |
0.7,
|
|
|
144 |
cv.circle(output, landmark, 2, landmark_color[idx], 2)
|
145 |
return output
|
146 |
|
147 |
+
def summarize_emotions(labels, confs):
|
148 |
+
"""Maakt de grote groene NL-lowercase samenvatting met gemiddelden per emotie."""
|
149 |
+
if not labels:
|
150 |
return "## **geen gezicht gedetecteerd**"
|
151 |
+
|
152 |
+
names_nl = []
|
153 |
+
for lab in labels:
|
154 |
+
names_nl.append(to_dutch_lower(FacialExpressionRecog.getDesc(lab)))
|
155 |
+
|
156 |
+
# tel per emotie + verzamel confidences
|
157 |
+
counts = Counter(names_nl)
|
158 |
+
conf_bucket = defaultdict(list)
|
159 |
+
for i, name in enumerate(names_nl):
|
160 |
+
if i < len(confs) and confs[i] is not None:
|
161 |
+
conf_bucket[name].append(float(confs[i]))
|
162 |
+
|
163 |
+
# top-emotie op basis van count
|
164 |
+
top = counts.most_common(1)[0][0]
|
165 |
+
|
166 |
+
# details: "blij (2, gem. 79%)"
|
167 |
+
parts = []
|
168 |
+
# sorteer op frequentie aflopend, dan alfabetisch
|
169 |
+
for name, n in sorted(counts.items(), key=lambda kv: (-kv[1], kv[0])):
|
170 |
+
if conf_bucket[name]:
|
171 |
+
avg = sum(conf_bucket[name]) / len(conf_bucket[name])
|
172 |
+
parts.append(f"{name} ({n}, gem. {_format_pct(avg)})")
|
173 |
+
else:
|
174 |
+
parts.append(f"{name} ({n})")
|
175 |
+
details = ", ".join(parts)
|
176 |
+
|
177 |
return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
|
178 |
|
179 |
+
def process_image(input_image):
|
180 |
+
"""Helper: run detectie en retourneer (output_img, labels[int], confs[float|None])."""
|
181 |
+
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
182 |
+
h, w, _ = image.shape
|
183 |
+
detect_model.setInputSize([w, h])
|
184 |
+
dets = detect_model.infer(image)
|
185 |
+
if dets is None:
|
186 |
+
return cv.cvtColor(image, cv.COLOR_BGR2RGB), [], [], None
|
187 |
+
labels, confs = [], []
|
188 |
+
for face_points in dets:
|
189 |
+
raw = fer_model.infer(image, face_points[:-1])
|
190 |
+
lab, conf = _parse_infer_output(raw)
|
191 |
+
labels.append(lab)
|
192 |
+
confs.append(conf)
|
193 |
+
output = visualize(image, dets, labels, confs)
|
194 |
+
return cv.cvtColor(output, cv.COLOR_BGR2RGB), labels, confs, dets
|
195 |
+
|
196 |
+
def detect_expression(input_image):
|
197 |
+
"""Versie die WÉL statistieken bijwerkt (gebruik voor 'Verstuur')."""
|
198 |
+
output_img, labels, confs, _ = process_image(input_image)
|
199 |
+
emotion_md = summarize_emotions(labels, confs)
|
200 |
+
# update stats in NL-lowercase
|
201 |
+
for lab in labels:
|
202 |
+
name_nl = to_dutch_lower(FacialExpressionRecog.getDesc(lab))
|
203 |
+
emotion_stats[name_nl] += 1
|
204 |
+
stats_plot = draw_bar_chart_cv(emotion_stats)
|
205 |
+
return output_img, emotion_md, stats_plot
|
206 |
+
|
207 |
+
def detect_expression_no_stats(input_image):
|
208 |
+
"""Versie die GEEN statistieken bijwerkt (gebruik voor gr.Examples & caching)."""
|
209 |
+
output_img, labels, confs, _ = process_image(input_image)
|
210 |
+
emotion_md = summarize_emotions(labels, confs)
|
211 |
+
# géén stats update en ook géén stats_image teruggeven
|
212 |
+
return output_img, emotion_md
|
213 |
+
|
214 |
# --- Staafdiagram tekenen met OpenCV (geen matplotlib nodig) ---
|
215 |
def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
216 |
img = np.full((height, width, 3), 255, dtype=np.uint8)
|
|
|
252 |
|
253 |
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
# Voorbeelden automatisch laden
|
256 |
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
|
257 |
EXAMPLES_DIR = Path("examples")
|