import cv2 as cv import numpy as np import gradio as gr from pathlib import Path from collections import Counter, defaultdict from huggingface_hub import hf_hub_download from facial_fer_model import FacialExpressionRecog from yunet import YuNet # Download ONNX-modellen FD_MODEL_PATH = hf_hub_download(repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx") FER_MODEL_PATH = hf_hub_download(repo_id="opencv/facial_expression_recognition", filename="facial_expression_recognition_mobilefacenet_2022july.onnx") backend_id = cv.dnn.DNN_BACKEND_OPENCV target_id = cv.dnn.DNN_TARGET_CPU fer_model = FacialExpressionRecog(modelPath=FER_MODEL_PATH, backendId=backend_id, targetId=target_id) detect_model = YuNet(modelPath=FD_MODEL_PATH) # EN -> NL mapping (lowercase) incl. varianten/typo's EN_TO_NL = { "neutral": "neutraal", "happy": "blij", "happiness": "blij", "sad": "verdrietig", "sadness": "verdrietig", "surprise": "verrast", "surprised": "verrast", "supprised": "verrast", # typo "surprized": "verrast", "angry": "boos", "anger": "boos", "disgust": "walging", "fear": "angstig", "fearful": "angstig", "fearfull": "angstig", # typo "contempt": "minachting", "unknown": "onbekend", } def to_dutch_lower(label: str) -> str: if not label: return "onbekend" key = label.strip().lower() return EN_TO_NL.get(key, key) emotion_stats = defaultdict(int) # Confidence helpers def _format_pct(conf): if conf is None: return None try: c = float(conf) except Exception: return None if c <= 1.0: c *= 100.0 c = max(0.0, min(100.0, c)) return f"{int(round(c))}%" def _parse_infer_output(result): if isinstance(result, np.ndarray): arr = result if arr.ndim == 1 and arr.size > 1: idx = int(np.argmax(arr)) conf = float(arr[idx]) return idx, conf elif arr.size == 1: return int(arr.flat[0]), None else: try: idx = int(arr[0]) return idx, None except Exception: return 0, None if isinstance(result, (list, tuple)): if len(result) >= 2 and isinstance(result[1], (float, np.floating, int, np.integer)): try: return int(result[0]), float(result[1]) except Exception: pass if len(result) >= 1: try: return int(result[0]), None except Exception: return 0, None try: return int(result), None except Exception: return 0, None def visualize(image, det_res, labels, confs): output = image.copy() landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)] for i, (det, lab) in enumerate(zip(det_res, labels)): bbox = det[0:4].astype(np.int32) label_en = FacialExpressionRecog.getDesc(lab) fer_type_str_nl = to_dutch_lower(label_en) pct = _format_pct(confs[i] if i < len(confs) else None) txt = f"{fer_type_str_nl}" + (f" {pct}" if pct else "") cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2) cv.putText(output, txt, (bbox[0], max(0, bbox[1] - 10)), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv.LINE_AA) landmarks = det[4:14].astype(np.int32).reshape((5, 2)) for idx, landmark in enumerate(landmarks): cv.circle(output, landmark, 2, landmark_color[idx], 2) return output def summarize_emotions(labels, confs): if not labels: return "## **geen gezicht gedetecteerd**" names_nl = [to_dutch_lower(FacialExpressionRecog.getDesc(lab)) for lab in labels] counts = Counter(names_nl) conf_bucket = defaultdict(list) for i, name in enumerate(names_nl): if i < len(confs) and confs[i] is not None: conf_bucket[name].append(float(confs[i])) top = counts.most_common(1)[0][0] parts = [] for name, n in sorted(counts.items(), key=lambda kv: (-kv[1], kv[0])): if conf_bucket[name]: avg = sum(conf_bucket[name]) / len(conf_bucket[name]) parts.append(f"{name} ({n}, gem. {_format_pct(avg)})") else: parts.append(f"{name} ({n})") details = ", ".join(parts) return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_" def process_image(input_image): image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR) h, w, _ = image.shape detect_model.setInputSize([w, h]) dets = detect_model.infer(image) if dets is None: return cv.cvtColor(image, cv.COLOR_BGR2RGB), [], [], None labels, confs = [], [] for face_points in dets: raw = fer_model.infer(image, face_points[:-1]) lab, conf = _parse_infer_output(raw) labels.append(lab) confs.append(conf) output = visualize(image, dets, labels, confs) return cv.cvtColor(output, cv.COLOR_BGR2RGB), labels, confs, dets def detect_expression(input_image): output_img, labels, confs, _ = process_image(input_image) emotion_md = summarize_emotions(labels, confs) for lab in labels: name_nl = to_dutch_lower(FacialExpressionRecog.getDesc(lab)) emotion_stats[name_nl] += 1 stats_plot = draw_bar_chart_cv(emotion_stats) return output_img, emotion_md, stats_plot def detect_expression_no_stats(input_image): output_img, labels, confs, _ = process_image(input_image) emotion_md = summarize_emotions(labels, confs) return output_img, emotion_md def draw_bar_chart_cv(stats: dict, width=640, height=320): img = np.full((height, width, 3), 255, dtype=np.uint8) cv.putText(img, "Live emotie-statistieken", (12, 28), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv.LINE_AA) if not stats: cv.putText(img, "Nog geen statistieken", (12, height//2), cv.FONT_HERSHEY_SIMPLEX, 0.9, (128, 128, 128), 2, cv.LINE_AA) return cv.cvtColor(img, cv.COLOR_BGR2RGB) left, right, top, bottom = 60, 20, 50, 40 plot_w = width - left - right plot_h = height - top - bottom origin = (left, height - bottom) cv.line(img, origin, (left + plot_w, height - bottom), (0, 0, 0), 2) cv.line(img, origin, (left, height - bottom - plot_h), (0, 0, 0), 2) labels = list(stats.keys()) values = [stats[k] for k in labels] max_val = max(values) if max(values) > 0 else 1 n = len(labels) gap = 12 bar_w = max(10, int((plot_w - gap * (n + 1)) / max(1, n))) for i, (lab, val) in enumerate(zip(labels, values)): x1 = left + gap + i * (bar_w + gap) x2 = x1 + bar_w h_px = int((val / max_val) * (plot_h - 10)) y1 = height - bottom - h_px y2 = height - bottom - 1 cv.rectangle(img, (x1, y1), (x2, y2), (0, 170, 60), -1) cv.putText(img, str(val), (x1 + 2, y1 - 6), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 90, 30), 1, cv.LINE_AA) show_lab = lab if len(lab) <= 12 else lab[:11] + "…" (tw, th), _ = cv.getTextSize(show_lab, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) tx = x1 + (bar_w - tw) // 2 ty = height - bottom + th + 12 cv.putText(img, show_lab, (tx, ty), cv.FONT_HERSHEY_SIMPLEX, 0.5, (40, 40, 40), 1, cv.LINE_AA) return cv.cvtColor(img, cv.COLOR_BGR2RGB) IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"} EXAMPLES_DIR = Path("examples") if EXAMPLES_DIR.exists() and EXAMPLES_DIR.is_dir(): example_paths = [str(p) for p in sorted(EXAMPLES_DIR.iterdir()) if Path(p).suffix.lower() in IMAGE_EXTS] else: example_paths = [] example_list = [[p] for p in example_paths] CACHE_EXAMPLES = bool(example_list) INFO_HTML = """
Dit model kan automatisch acht emoties herkennen in een foto van een gezicht:
Je kunt hierboven een eigen foto uploaden of een voorbeeld aanklikken. Het systeem doorloopt twee stappen:
Deze modellen zijn getraind met machine learning. Voor dit type taak is supervised training gebruikt: er is gewerkt met een grote dataset van gezichten waarbij elke foto een label (zoals “blij” of “boos”) heeft. Tijdens het trainen leert het model welke combinaties van gezichtskenmerken bij welke emotie horen.
Door heel veel voorbeelden te zien, kan het model ook bij nieuwe foto’s een inschatting maken. Het kijkt niet naar één detail, maar naar patronen in het hele gezicht.