Spaces:
Runtime error
Runtime error
import os, traceback, sys, parselmouth | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from my_utils import load_audio | |
import pyworld | |
import numpy as np, logging | |
sys.path.append(r'D:\RVC-beta0717') | |
import torchcrepe # Fork Feature. Crepe algo for training and preprocess | |
import torch | |
from torch import Tensor # Fork Feature. Used for pitch prediction for torch crepe. | |
import scipy.signal as signal # Fork Feature hybrid inference | |
import tqdm | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
from multiprocessing import Process | |
exp_dir = sys.argv[1] | |
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") | |
DoFormant = False | |
Quefrency = 0.0 | |
Timbre = 0.0 | |
def printt(strr): | |
print(strr) | |
f.write("%s\n" % strr) | |
f.flush() | |
n_p = int(sys.argv[2]) | |
f0method = sys.argv[3] | |
extraction_crepe_hop_length = 0 | |
try: | |
extraction_crepe_hop_length = int(sys.argv[4]) | |
except: | |
print("Temp Issue. echl is not being passed with argument!") | |
extraction_crepe_hop_length = 128 | |
# print("EXTRACTION CREPE HOP LENGTH: " + str(extraction_crepe_hop_length)) | |
# print("EXTRACTION CREPE HOP LENGTH TYPE: " + str(type(extraction_crepe_hop_length))) | |
class FeatureInput(object): | |
def __init__(self, samplerate=16000, hop_size=160): | |
self.fs = samplerate | |
self.hop = hop_size | |
self.f0_bin = 256 | |
self.f0_max = 1100.0 | |
self.f0_min = 50.0 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
# EXPERIMENTAL. PROBABLY BUGGY | |
def get_f0_hybrid_computation( | |
self, | |
methods_str, | |
x, | |
f0_min, | |
f0_max, | |
p_len, | |
crepe_hop_length, | |
time_step, | |
): | |
# Get various f0 methods from input to use in the computation stack | |
s = methods_str | |
s = s.split("hybrid")[1] | |
s = s.replace("[", "").replace("]", "") | |
methods = s.split("+") | |
f0_computation_stack = [] | |
print("Calculating f0 pitch estimations for methods: %s" % str(methods)) | |
x = x.astype(np.float32) | |
x /= np.quantile(np.abs(x), 0.999) | |
# Get f0 calculations for all methods specified | |
for method in methods: | |
f0 = None | |
if method == "pm": | |
f0 = ( | |
parselmouth.Sound(x, self.fs) | |
.to_pitch_ac( | |
time_step=time_step / 1000, | |
voicing_threshold=0.6, | |
pitch_floor=f0_min, | |
pitch_ceiling=f0_max, | |
) | |
.selected_array["frequency"] | |
) | |
pad_size = (p_len - len(f0) + 1) // 2 | |
if pad_size > 0 or p_len - len(f0) - pad_size > 0: | |
f0 = np.pad( | |
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" | |
) | |
elif method == "crepe": | |
# Pick a batch size that doesn't cause memory errors on your gpu | |
torch_device_index = 0 | |
torch_device = None | |
if torch.cuda.is_available(): | |
torch_device = torch.device( | |
f"cuda:{torch_device_index % torch.cuda.device_count()}" | |
) | |
elif torch.backends.mps.is_available(): | |
torch_device = torch.device("mps") | |
else: | |
torch_device = torch.device("cpu") | |
model = "full" | |
batch_size = 512 | |
# Compute pitch using first gpu | |
audio = torch.tensor(np.copy(x))[None].float() | |
f0, pd = torchcrepe.predict( | |
audio, | |
self.fs, | |
160, | |
self.f0_min, | |
self.f0_max, | |
model, | |
batch_size=batch_size, | |
device=torch_device, | |
return_periodicity=True, | |
) | |
pd = torchcrepe.filter.median(pd, 3) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0[pd < 0.1] = 0 | |
f0 = f0[0].cpu().numpy() | |
f0 = f0[1:] # Get rid of extra first frame | |
elif method == "mangio-crepe": | |
# print("Performing crepe pitch extraction. (EXPERIMENTAL)") | |
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length)) | |
x = x.astype(np.float32) | |
x /= np.quantile(np.abs(x), 0.999) | |
torch_device_index = 0 | |
torch_device = None | |
if torch.cuda.is_available(): | |
torch_device = torch.device( | |
f"cuda:{torch_device_index % torch.cuda.device_count()}" | |
) | |
elif torch.backends.mps.is_available(): | |
torch_device = torch.device("mps") | |
else: | |
torch_device = torch.device("cpu") | |
audio = torch.from_numpy(x).to(torch_device, copy=True) | |
audio = torch.unsqueeze(audio, dim=0) | |
if audio.ndim == 2 and audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True).detach() | |
audio = audio.detach() | |
# print( | |
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " + | |
# str(crepe_hop_length) | |
# ) | |
# Pitch prediction for pitch extraction | |
pitch: Tensor = torchcrepe.predict( | |
audio, | |
self.fs, | |
crepe_hop_length, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=crepe_hop_length * 2, | |
device=torch_device, | |
pad=True, | |
) | |
p_len = p_len or x.shape[0] // crepe_hop_length | |
# Resize the pitch | |
source = np.array(pitch.squeeze(0).cpu().float().numpy()) | |
source[source < 0.001] = np.nan | |
target = np.interp( | |
np.arange(0, len(source) * p_len, len(source)) / p_len, | |
np.arange(0, len(source)), | |
source, | |
) | |
f0 = np.nan_to_num(target) | |
elif method == "harvest": | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=self.fs, | |
f0_ceil=self.f0_max, | |
f0_floor=self.f0_min, | |
frame_period=1000 * self.hop / self.fs, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) | |
f0 = signal.medfilt(f0, 3) | |
f0 = f0[1:] | |
elif method == "dio": | |
f0, t = pyworld.dio( | |
x.astype(np.double), | |
fs=self.fs, | |
f0_ceil=self.f0_max, | |
f0_floor=self.f0_min, | |
frame_period=1000 * self.hop / self.fs, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) | |
f0 = signal.medfilt(f0, 3) | |
f0 = f0[1:] | |
f0_computation_stack.append(f0) | |
for fc in f0_computation_stack: | |
print(len(fc)) | |
# print("Calculating hybrid median f0 from the stack of: %s" % str(methods)) | |
f0_median_hybrid = None | |
if len(f0_computation_stack) == 1: | |
f0_median_hybrid = f0_computation_stack[0] | |
else: | |
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) | |
return f0_median_hybrid | |
def compute_f0(self, path, f0_method, crepe_hop_length): | |
x = load_audio(path, self.fs, DoFormant, Quefrency, Timbre) | |
p_len = x.shape[0] // self.hop | |
if f0_method == "pm": | |
time_step = 160 / 16000 * 1000 | |
f0 = ( | |
parselmouth.Sound(x, self.fs) | |
.to_pitch_ac( | |
time_step=time_step / 1000, | |
voicing_threshold=0.6, | |
pitch_floor=self.f0_min, | |
pitch_ceiling=self.f0_max, | |
) | |
.selected_array["frequency"] | |
) | |
pad_size = (p_len - len(f0) + 1) // 2 | |
if pad_size > 0 or p_len - len(f0) - pad_size > 0: | |
f0 = np.pad( | |
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" | |
) | |
elif f0_method == "harvest": | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=self.fs, | |
f0_ceil=self.f0_max, | |
f0_floor=self.f0_min, | |
frame_period=1000 * self.hop / self.fs, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) | |
elif f0_method == "rmvpe": | |
if hasattr(self, "model_rmvpe") == False: | |
from rmvpe import RMVPE | |
print("loading rmvpe model") | |
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=False, device="cuda:0") | |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
elif f0_method == "dio": | |
f0, t = pyworld.dio( | |
x.astype(np.double), | |
fs=self.fs, | |
f0_ceil=self.f0_max, | |
f0_floor=self.f0_min, | |
frame_period=1000 * self.hop / self.fs, | |
) | |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) | |
elif ( | |
f0_method == "crepe" | |
): # Fork Feature: Added crepe f0 for f0 feature extraction | |
# Pick a batch size that doesn't cause memory errors on your gpu | |
torch_device_index = 0 | |
torch_device = None | |
if torch.cuda.is_available(): | |
torch_device = torch.device( | |
f"cuda:{torch_device_index % torch.cuda.device_count()}" | |
) | |
elif torch.backends.mps.is_available(): | |
torch_device = torch.device("mps") | |
else: | |
torch_device = torch.device("cpu") | |
model = "full" | |
batch_size = 512 | |
# Compute pitch using first gpu | |
audio = torch.tensor(np.copy(x))[None].float() | |
f0, pd = torchcrepe.predict( | |
audio, | |
self.fs, | |
160, | |
self.f0_min, | |
self.f0_max, | |
model, | |
batch_size=batch_size, | |
device=torch_device, | |
return_periodicity=True, | |
) | |
pd = torchcrepe.filter.median(pd, 3) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0[pd < 0.1] = 0 | |
f0 = f0[0].cpu().numpy() | |
elif f0_method == "mangio-crepe": | |
# print("Performing crepe pitch extraction. (EXPERIMENTAL)") | |
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length)) | |
x = x.astype(np.float32) | |
x /= np.quantile(np.abs(x), 0.999) | |
torch_device_index = 0 | |
torch_device = None | |
if torch.cuda.is_available(): | |
torch_device = torch.device( | |
f"cuda:{torch_device_index % torch.cuda.device_count()}" | |
) | |
elif torch.backends.mps.is_available(): | |
torch_device = torch.device("mps") | |
else: | |
torch_device = torch.device("cpu") | |
audio = torch.from_numpy(x).to(torch_device, copy=True) | |
audio = torch.unsqueeze(audio, dim=0) | |
if audio.ndim == 2 and audio.shape[0] > 1: | |
audio = torch.mean(audio, dim=0, keepdim=True).detach() | |
audio = audio.detach() | |
# print( | |
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " + | |
# str(crepe_hop_length) | |
# ) | |
# Pitch prediction for pitch extraction | |
pitch: Tensor = torchcrepe.predict( | |
audio, | |
self.fs, | |
crepe_hop_length, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=crepe_hop_length * 2, | |
device=torch_device, | |
pad=True, | |
) | |
p_len = p_len or x.shape[0] // crepe_hop_length | |
# Resize the pitch | |
source = np.array(pitch.squeeze(0).cpu().float().numpy()) | |
source[source < 0.001] = np.nan | |
target = np.interp( | |
np.arange(0, len(source) * p_len, len(source)) / p_len, | |
np.arange(0, len(source)), | |
source, | |
) | |
f0 = np.nan_to_num(target) | |
elif "hybrid" in f0_method: # EXPERIMENTAL | |
# Perform hybrid median pitch estimation | |
time_step = 160 / 16000 * 1000 | |
f0 = self.get_f0_hybrid_computation( | |
f0_method, | |
x, | |
self.f0_min, | |
self.f0_max, | |
p_len, | |
crepe_hop_length, | |
time_step, | |
) | |
# Mangio-RVC-Fork Feature: Add hybrid f0 inference to feature extraction. EXPERIMENTAL... | |
return f0 | |
def coarse_f0(self, f0): | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( | |
self.f0_bin - 2 | |
) / (self.f0_mel_max - self.f0_mel_min) + 1 | |
# use 0 or 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 | |
f0_coarse = np.rint(f0_mel).astype(int) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( | |
f0_coarse.max(), | |
f0_coarse.min(), | |
) | |
return f0_coarse | |
def go(self, paths, f0_method, crepe_hop_length, thread_n): | |
if len(paths) == 0: | |
printt("no-f0-todo") | |
else: | |
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar: | |
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths): | |
try: | |
pbar.set_description( | |
"thread:%s, f0ing, Hop-Length:%s" | |
% (thread_n, crepe_hop_length) | |
) | |
pbar.update(1) | |
if ( | |
os.path.exists(opt_path1 + ".npy") == True | |
and os.path.exists(opt_path2 + ".npy") == True | |
): | |
continue | |
featur_pit = self.compute_f0( | |
inp_path, f0_method, crepe_hop_length | |
) | |
np.save( | |
opt_path2, | |
featur_pit, | |
allow_pickle=False, | |
) # nsf | |
coarse_pit = self.coarse_f0(featur_pit) | |
np.save( | |
opt_path1, | |
coarse_pit, | |
allow_pickle=False, | |
) # ori | |
except: | |
printt( | |
"f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()) | |
) | |
if __name__ == "__main__": | |
# exp_dir=r"E:\codes\py39\dataset\mi-test" | |
# n_p=16 | |
# f = open("%s/log_extract_f0.log"%exp_dir, "w") | |
printt(sys.argv) | |
featureInput = FeatureInput() | |
paths = [] | |
inp_root = "%s/1_16k_wavs" % (exp_dir) | |
opt_root1 = "%s/2a_f0" % (exp_dir) | |
opt_root2 = "%s/2b-f0nsf" % (exp_dir) | |
os.makedirs(opt_root1, exist_ok=True) | |
os.makedirs(opt_root2, exist_ok=True) | |
for name in sorted(list(os.listdir(inp_root))): | |
inp_path = "%s/%s" % (inp_root, name) | |
if "spec" in inp_path: | |
continue | |
opt_path1 = "%s/%s" % (opt_root1, name) | |
opt_path2 = "%s/%s" % (opt_root2, name) | |
paths.append([inp_path, opt_path1, opt_path2]) | |
ps = [] | |
print("Using f0 method: " + f0method) | |
for i in range(n_p): | |
p = Process( | |
target=featureInput.go, | |
args=(paths[i::n_p], f0method, extraction_crepe_hop_length, i), | |
) | |
ps.append(p) | |
p.start() | |
for i in range(n_p): | |
ps[i].join() | |