Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
| # and proprietary rights in and to this software, related documentation | |
| # and any modifications thereto. Any use, reproduction, disclosure or | |
| # distribution of this software and related documentation without an express | |
| # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
| import torch | |
| from util.tables import * | |
| __all__ = [ | |
| 'FlexiCubes' | |
| ] | |
| class FlexiCubes: | |
| """ | |
| This class implements the FlexiCubes method for extracting meshes from scalar fields. | |
| It maintains a series of lookup tables and indices to support the mesh extraction process. | |
| FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances | |
| the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting | |
| the surface representation through gradient-based optimization. | |
| During instantiation, the class loads DMC tables from a file and transforms them into | |
| PyTorch tensors on the specified device. | |
| Attributes: | |
| device (str): Specifies the computational device (default is "cuda"). | |
| dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges | |
| associated with each dual vertex in 256 Marching Cubes (MC) configurations. | |
| num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of | |
| the 256 MC configurations. | |
| check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19 | |
| of the DMC configurations. | |
| tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface. | |
| quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles | |
| along one diagonal. | |
| quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into | |
| two triangles along the other diagonal. | |
| quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles | |
| during training by connecting all edges to their midpoints. | |
| cube_corners (torch.Tensor): Defines the positions of a standard unit cube's | |
| eight corners in 3D space, ordered starting from the origin (0,0,0), | |
| moving along the x-axis, then y-axis, and finally z-axis. | |
| Used as a blueprint for generating a voxel grid. | |
| cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used | |
| to retrieve the case id. | |
| cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs. | |
| Used to retrieve edge vertices in DMC. | |
| edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with | |
| their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the | |
| first edge is oriented along the x-axis. | |
| dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges | |
| across four adjacent cubes to the shared faces of these cubes. For instance, | |
| dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along | |
| the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively. | |
| This tensor is only utilized during isosurface tetrahedralization. | |
| adj_pairs (torch.Tensor): | |
| A tensor containing index pairs that correspond to neighboring cubes that share the same edge. | |
| qef_reg_scale (float): | |
| The scaling factor applied to the regularization loss to prevent issues with singularity | |
| when solving the QEF. This parameter is only used when a 'grad_func' is specified. | |
| weight_scale (float): | |
| The scale of weights in FlexiCubes. Should be between 0 and 1. | |
| """ | |
| def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99): | |
| self.device = device | |
| self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False) | |
| self.num_vd_table = torch.tensor(num_vd_table, | |
| dtype=torch.long, device=device, requires_grad=False) | |
| self.check_table = torch.tensor( | |
| check_table, | |
| dtype=torch.long, device=device, requires_grad=False) | |
| self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False) | |
| self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False) | |
| self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False) | |
| self.quad_split_train = torch.tensor( | |
| [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False) | |
| self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [ | |
| 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device) | |
| self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False)) | |
| self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6, | |
| 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False) | |
| self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1], | |
| dtype=torch.long, device=device) | |
| self.dir_faces_table = torch.tensor([ | |
| [[5, 4], [3, 2], [4, 5], [2, 3]], | |
| [[5, 4], [1, 0], [4, 5], [0, 1]], | |
| [[3, 2], [1, 0], [2, 3], [0, 1]] | |
| ], dtype=torch.long, device=device) | |
| self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device) | |
| self.qef_reg_scale = qef_reg_scale | |
| self.weight_scale = weight_scale | |
| def construct_voxel_grid(self, res): | |
| """ | |
| Generates a voxel grid based on the specified resolution. | |
| Args: | |
| res (int or list[int]): The resolution of the voxel grid. If an integer | |
| is provided, it is used for all three dimensions. If a list or tuple | |
| of 3 integers is provided, they define the resolution for the x, | |
| y, and z dimensions respectively. | |
| Returns: | |
| (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the | |
| cube corners (index into vertices) of the constructed voxel grid. | |
| The vertices are centered at the origin, with the length of each | |
| dimension in the grid being one. | |
| """ | |
| base_cube_f = torch.arange(8).to(self.device) | |
| if isinstance(res, int): | |
| res = (res, res, res) | |
| voxel_grid_template = torch.ones(res, device=self.device) | |
| res = torch.tensor([res], dtype=torch.float, device=self.device) | |
| coords = torch.nonzero(voxel_grid_template).float() / res # N, 3 | |
| verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3) | |
| cubes = (base_cube_f.unsqueeze(0) + | |
| torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1) | |
| verts_rounded = torch.round(verts * 10**5) / (10**5) | |
| verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True) | |
| cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8) | |
| return verts_unique - 0.5, cubes | |
| def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None, | |
| gamma_f=None, training=False, output_tetmesh=False, grad_func=None): | |
| r""" | |
| Main function for mesh extraction from scalar field using FlexiCubes. This function converts | |
| discrete signed distance fields, encoded on voxel grids and additional per-cube parameters, | |
| to triangle or tetrahedral meshes using a differentiable operation as described in | |
| `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances | |
| mesh quality and geometric fidelity by adjusting the surface representation based on gradient | |
| optimization. The output surface is differentiable with respect to the input vertex positions, | |
| scalar field values, and weight parameters. | |
| If you intend to extract a surface mesh from a fixed Signed Distance Field without the | |
| optimization of parameters, it is suggested to provide the "grad_func" which should | |
| return the surface gradient at any given 3D position. When grad_func is provided, the process | |
| to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as | |
| described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy. | |
| Please note, this approach is non-differentiable. | |
| For more details and example usage in optimization, refer to the | |
| `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper. | |
| Args: | |
| x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed. | |
| s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values | |
| denote that the corresponding vertex resides inside the isosurface. This affects | |
| the directions of the extracted triangle faces and volume to be tetrahedralized. | |
| cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid. | |
| res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it | |
| is used for all three dimensions. If a list or tuple of 3 integers is provided, they | |
| specify the resolution for the x, y, and z dimensions respectively. | |
| beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual | |
| vertices positioning. Defaults to uniform value for all edges. | |
| alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual | |
| vertices positioning. Defaults to uniform value for all vertices. | |
| gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of | |
| quadrilaterals into triangles. Defaults to uniform value for all cubes. | |
| training (bool, optional): If set to True, applies differentiable quad splitting for | |
| training. Defaults to False. | |
| output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise, | |
| outputs a triangular mesh. Defaults to False. | |
| grad_func (callable, optional): A function to compute the surface gradient at specified | |
| 3D positions (input: Nx3 positions). The function should return gradients as an Nx3 | |
| tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None. | |
| Returns: | |
| (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing: | |
| - Vertices for the extracted triangular/tetrahedral mesh. | |
| - Faces for the extracted triangular/tetrahedral mesh. | |
| - Regularizer L_dev, computed per dual vertex. | |
| .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization: | |
| https://research.nvidia.com/labs/toronto-ai/flexicubes/ | |
| .. _Manifold Dual Contouring: | |
| https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf | |
| """ | |
| surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8) | |
| if surf_cubes.sum() == 0: | |
| return torch.zeros( | |
| (0, 3), | |
| device=self.device), torch.zeros( | |
| (0, 4), | |
| dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros( | |
| (0, 3), | |
| dtype=torch.long, device=self.device), torch.zeros( | |
| (0), | |
| device=self.device) | |
| beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes) | |
| case_ids = self._get_case_id(occ_fx8, surf_cubes, res) | |
| surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes) | |
| vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd( | |
| x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func) | |
| vertices, faces, s_edges, edge_indices = self._triangulate( | |
| s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func) | |
| if not output_tetmesh: | |
| return vertices, faces, L_dev | |
| else: | |
| vertices, tets = self._tetrahedralize( | |
| x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices, | |
| surf_cubes, training) | |
| return vertices, tets, L_dev | |
| def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges): | |
| """ | |
| Regularizer L_dev as in Equation 8 | |
| """ | |
| dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1) | |
| mean_l2 = torch.zeros_like(vd[:, 0]) | |
| mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float() | |
| mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs() | |
| return mad | |
| def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes): | |
| """ | |
| Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones. | |
| """ | |
| n_cubes = surf_cubes.shape[0] | |
| if beta_fx12 is not None: | |
| beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1) | |
| else: | |
| beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device) | |
| if alpha_fx8 is not None: | |
| alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1) | |
| else: | |
| alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device) | |
| if gamma_f is not None: | |
| gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2 | |
| else: | |
| gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device) | |
| return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes] | |
| def _get_case_id(self, occ_fx8, surf_cubes, res): | |
| """ | |
| Obtains the ID of topology cases based on cell corner occupancy. This function resolves the | |
| ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the | |
| supplementary material. It should be noted that this function assumes a regular grid. | |
| """ | |
| case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1) | |
| problem_config = self.check_table.to(self.device)[case_ids] | |
| to_check = problem_config[..., 0] == 1 | |
| problem_config = problem_config[to_check] | |
| if not isinstance(res, (list, tuple)): | |
| res = [res, res, res] | |
| # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array, | |
| # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes). | |
| # This allows efficient checking on adjacent cubes. | |
| problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long) | |
| vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3 | |
| vol_idx_problem = vol_idx[surf_cubes][to_check] | |
| problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config | |
| vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4] | |
| within_range = ( | |
| vol_idx_problem_adj[..., 0] >= 0) & ( | |
| vol_idx_problem_adj[..., 0] < res[0]) & ( | |
| vol_idx_problem_adj[..., 1] >= 0) & ( | |
| vol_idx_problem_adj[..., 1] < res[1]) & ( | |
| vol_idx_problem_adj[..., 2] >= 0) & ( | |
| vol_idx_problem_adj[..., 2] < res[2]) | |
| vol_idx_problem = vol_idx_problem[within_range] | |
| vol_idx_problem_adj = vol_idx_problem_adj[within_range] | |
| problem_config = problem_config[within_range] | |
| problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0], | |
| vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]] | |
| # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted. | |
| to_invert = (problem_config_adj[..., 0] == 1) | |
| idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert] | |
| case_ids.index_put_((idx,), problem_config[to_invert][..., -1]) | |
| return case_ids | |
| def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes): | |
| """ | |
| Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge | |
| can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge | |
| and marks the cube edges with this index. | |
| """ | |
| occ_n = s_n < 0 | |
| all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2) | |
| unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) | |
| unique_edges = unique_edges.long() | |
| mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 | |
| surf_edges_mask = mask_edges[_idx_map] | |
| counts = counts[_idx_map] | |
| mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1 | |
| mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device) | |
| # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index | |
| # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1. | |
| idx_map = mapping[_idx_map] | |
| surf_edges = unique_edges[mask_edges] | |
| return surf_edges, idx_map, counts, surf_edges_mask | |
| def _identify_surf_cubes(self, s_n, cube_fx8): | |
| """ | |
| Identifies grid cubes that intersect with the underlying surface by checking if the signs at | |
| all corners are not identical. | |
| """ | |
| occ_n = s_n < 0 | |
| occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8) | |
| _occ_sum = torch.sum(occ_fx8, -1) | |
| surf_cubes = (_occ_sum > 0) & (_occ_sum < 8) | |
| return surf_cubes, occ_fx8 | |
| def _linear_interp(self, edges_weight, edges_x): | |
| """ | |
| Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'. | |
| """ | |
| edge_dim = edges_weight.dim() - 2 | |
| assert edges_weight.shape[edge_dim] == 2 | |
| edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), - | |
| torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim) | |
| denominator = edges_weight.sum(edge_dim) | |
| ue = (edges_x * edges_weight).sum(edge_dim) / denominator | |
| return ue | |
| def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None): | |
| p_bxnx3 = p_bxnx3.reshape(-1, 7, 3) | |
| norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3) | |
| c_bx3 = c_bx3.reshape(-1, 3) | |
| A = norm_bxnx3 | |
| B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True) | |
| A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1) | |
| B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1) | |
| A = torch.cat([A, A_reg], 1) | |
| B = torch.cat([B, B_reg], 1) | |
| dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1) | |
| return dual_verts | |
| def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func): | |
| """ | |
| Computes the location of dual vertices as described in Section 4.2 | |
| """ | |
| alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2) | |
| surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3) | |
| surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1) | |
| zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x) | |
| idx_map = idx_map.reshape(-1, 12) | |
| num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0) | |
| edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], [] | |
| total_num_vd = 0 | |
| vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False) | |
| if grad_func is not None: | |
| normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1) | |
| vd = [] | |
| for num in torch.unique(num_vd): | |
| cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching) | |
| curr_num_vd = cur_cubes.sum() * num | |
| curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7) | |
| curr_edge_group_to_vd = torch.arange( | |
| curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd | |
| total_num_vd += curr_num_vd | |
| curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[ | |
| cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group) | |
| curr_mask = (curr_edge_group != -1) | |
| edge_group.append(torch.masked_select(curr_edge_group, curr_mask)) | |
| edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask)) | |
| edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask)) | |
| vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True)) | |
| vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1)) | |
| if grad_func is not None: | |
| with torch.no_grad(): | |
| cube_e_verts_idx = idx_map[cur_cubes] | |
| curr_edge_group[~curr_mask] = 0 | |
| verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group) | |
| verts_group_idx[verts_group_idx == -1] = 0 | |
| verts_group_pos = torch.index_select( | |
| input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3) | |
| v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1) | |
| curr_mask = curr_mask.reshape(-1, num.item(), 7, 1) | |
| verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2)) | |
| normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape( | |
| -1, num.item(), 7, | |
| 3) | |
| curr_mask = curr_mask.squeeze(2) | |
| vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask, | |
| verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3)) | |
| edge_group = torch.cat(edge_group) | |
| edge_group_to_vd = torch.cat(edge_group_to_vd) | |
| edge_group_to_cube = torch.cat(edge_group_to_cube) | |
| vd_num_edges = torch.cat(vd_num_edges) | |
| vd_gamma = torch.cat(vd_gamma) | |
| if grad_func is not None: | |
| vd = torch.cat(vd) | |
| L_dev = torch.zeros([1], device=self.device) | |
| else: | |
| vd = torch.zeros((total_num_vd, 3), device=self.device) | |
| beta_sum = torch.zeros((total_num_vd, 1), device=self.device) | |
| idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group) | |
| x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3) | |
| s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1) | |
| zero_crossing_group = torch.index_select( | |
| input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3) | |
| alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0, | |
| index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1) | |
| ue_group = self._linear_interp(s_group * alpha_group, x_group) | |
| beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0, | |
| index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1) | |
| beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group) | |
| vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum | |
| L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges) | |
| v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd | |
| vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube * | |
| 12 + edge_group, src=v_idx[edge_group_to_vd]) | |
| return vd, L_dev, vd_gamma, vd_idx_map | |
| def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func): | |
| """ | |
| Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into | |
| triangles based on the gamma parameter, as described in Section 4.3. | |
| """ | |
| with torch.no_grad(): | |
| group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes. | |
| group = idx_map.reshape(-1)[group_mask] | |
| vd_idx = vd_idx_map[group_mask] | |
| edge_indices, indices = torch.sort(group, stable=True) | |
| quad_vd_idx = vd_idx[indices].reshape(-1, 4) | |
| # Ensure all face directions point towards the positive SDF to maintain consistent winding. | |
| s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2) | |
| flip_mask = s_edges[:, 0] > 0 | |
| quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]], | |
| quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]])) | |
| if grad_func is not None: | |
| # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients. | |
| with torch.no_grad(): | |
| vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1) | |
| quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) | |
| gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True) | |
| gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True) | |
| else: | |
| quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4) | |
| gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor( | |
| 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1) | |
| gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor( | |
| 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1) | |
| if not training: | |
| mask = (gamma_02 > gamma_13).squeeze(1) | |
| faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device) | |
| faces[mask] = quad_vd_idx[mask][:, self.quad_split_1] | |
| faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2] | |
| faces = faces.reshape(-1, 3) | |
| else: | |
| vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) | |
| vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) + | |
| torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2 | |
| vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) + | |
| torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2 | |
| weight_sum = (gamma_02 + gamma_13) + 1e-8 | |
| vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / | |
| weight_sum.unsqueeze(-1)).squeeze(1) | |
| vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0] | |
| vd = torch.cat([vd, vd_center]) | |
| faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2) | |
| faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3) | |
| return vd, faces, s_edges, edge_indices | |
| def _tetrahedralize( | |
| self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices, | |
| surf_cubes, training): | |
| """ | |
| Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5. | |
| """ | |
| occ_n = s_n < 0 | |
| occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8) | |
| occ_sum = torch.sum(occ_fx8, -1) | |
| inside_verts = x_nx3[occ_n] | |
| mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1 | |
| mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0] | |
| """ | |
| For each grid edge connecting two grid vertices with different | |
| signs, we first form a four-sided pyramid by connecting one | |
| of the grid vertices with four mesh vertices that correspond | |
| to the grid edge and then subdivide the pyramid into two tetrahedra | |
| """ | |
| inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[ | |
| s_edges < 0]] | |
| if not training: | |
| inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1) | |
| else: | |
| inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1) | |
| tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1) | |
| """ | |
| For each grid edge connecting two grid vertices with the | |
| same sign, the tetrahedron is formed by the two grid vertices | |
| and two vertices in consecutive adjacent cells | |
| """ | |
| inside_cubes = (occ_sum == 8) | |
| inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1) | |
| inside_cubes_center_idx = torch.arange( | |
| inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0] | |
| surface_n_inside_cubes = surf_cubes | inside_cubes | |
| edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13), | |
| dtype=torch.long, device=x_nx3.device) * -1 | |
| surf_cubes = surf_cubes[surface_n_inside_cubes] | |
| inside_cubes = inside_cubes[surface_n_inside_cubes] | |
| edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12) | |
| edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx | |
| all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2) | |
| unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) | |
| unique_edges = unique_edges.long() | |
| mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2 | |
| mask = mask_edges[_idx_map] | |
| counts = counts[_idx_map] | |
| mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1 | |
| mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device) | |
| idx_map = mapping[_idx_map] | |
| group_mask = (counts == 4) & mask | |
| group = idx_map.reshape(-1)[group_mask] | |
| edge_indices, indices = torch.sort(group) | |
| cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long, | |
| device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask] | |
| edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze( | |
| 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask] | |
| # Identify the face shared by the adjacent cells. | |
| cube_idx_4 = cube_idx[indices].reshape(-1, 4) | |
| edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0] | |
| shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1) | |
| cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1) | |
| # Identify an edge of the face with different signs and | |
| # select the mesh vertex corresponding to the identified edge. | |
| case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255 | |
| case_ids_expand[surf_cubes] = case_ids | |
| cases = case_ids_expand[cube_idx_4x2] | |
| quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2) | |
| mask = (quad_edge == -1).sum(-1) == 0 | |
| inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2) | |
| tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask] | |
| tets = torch.cat([tets_surface, tets_inside]) | |
| vertices = torch.cat([vertices, inside_verts, inside_cubes_center]) | |
| return vertices, tets | |