Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -25,51 +25,112 @@
|
|
25 |
# )
|
26 |
|
27 |
# iface.launch()
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
import torch
|
30 |
import gradio as gr
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
"
|
39 |
-
"
|
|
|
40 |
}
|
41 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
|
43 |
-
|
44 |
-
MODEL_DIR = "./models"
|
45 |
-
os.makedirs(MODEL_DIR, exist_ok=True)
|
46 |
|
47 |
-
for
|
48 |
-
|
49 |
-
if not os.path.exists(
|
|
|
50 |
print(f"Downloading {filename}...")
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
model
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with torch.no_grad():
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
|
|
67 |
demo = gr.Interface(
|
68 |
-
fn=
|
69 |
-
inputs=gr.Image(type="
|
70 |
-
outputs=gr.Image(type="
|
71 |
-
title="Convolutional Reconstruction Model
|
72 |
-
description="Upload an image to
|
73 |
)
|
74 |
|
75 |
if __name__ == "__main__":
|
|
|
25 |
# )
|
26 |
|
27 |
# iface.launch()
|
28 |
+
|
29 |
+
|
30 |
+
#############2nd################3
|
31 |
+
# import os
|
32 |
+
# import torch
|
33 |
+
# import gradio as gr
|
34 |
+
# from huggingface_hub import hf_hub_download
|
35 |
+
# from model import CRM # Make sure this matches your model file structure
|
36 |
+
|
37 |
+
# # Define model details
|
38 |
+
# REPO_ID = "Mariam-Elz/CRM" # Hugging Face model repo
|
39 |
+
# MODEL_FILES = {
|
40 |
+
# "ccm-diffusion": "ccm-diffusion.pth",
|
41 |
+
# "pixel-diffusion": "pixel-diffusion.pth",
|
42 |
+
# "CRM": "CRM.pth"
|
43 |
+
# }
|
44 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
+
|
46 |
+
# # Download models from Hugging Face if not already present
|
47 |
+
# MODEL_DIR = "./models"
|
48 |
+
# os.makedirs(MODEL_DIR, exist_ok=True)
|
49 |
+
|
50 |
+
# for name, filename in MODEL_FILES.items():
|
51 |
+
# model_path = os.path.join(MODEL_DIR, filename)
|
52 |
+
# if not os.path.exists(model_path):
|
53 |
+
# print(f"Downloading {filename}...")
|
54 |
+
# hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR)
|
55 |
+
|
56 |
+
# # Load the model
|
57 |
+
# print("Loading CRM Model...")
|
58 |
+
# model = CRM()
|
59 |
+
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE))
|
60 |
+
# model.to(DEVICE)
|
61 |
+
# model.eval()
|
62 |
+
# print("✅ Model Loaded Successfully!")
|
63 |
+
|
64 |
+
# # Define Gradio Interface
|
65 |
+
# def predict(input_image):
|
66 |
+
# with torch.no_grad():
|
67 |
+
# output = model(input_image.to(DEVICE)) # Modify based on model input format
|
68 |
+
# return output.cpu()
|
69 |
+
|
70 |
+
# demo = gr.Interface(
|
71 |
+
# fn=predict,
|
72 |
+
# inputs=gr.Image(type="pil"),
|
73 |
+
# outputs=gr.Image(type="pil"),
|
74 |
+
# title="Convolutional Reconstruction Model (CRM)",
|
75 |
+
# description="Upload an image to generate a reconstructed output."
|
76 |
+
# )
|
77 |
+
|
78 |
+
# if __name__ == "__main__":
|
79 |
+
# demo.launch()
|
80 |
+
########################3rd######################3
|
81 |
+
|
82 |
import torch
|
83 |
import gradio as gr
|
84 |
+
import requests
|
85 |
+
import os
|
86 |
+
|
87 |
+
# Download model weights from Hugging Face model repo (if not already present)
|
88 |
+
model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
89 |
+
|
90 |
+
model_files = {
|
91 |
+
"ccm-diffusion.pth": "ccm-diffusion.pth",
|
92 |
+
"pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
+
"CRM.pth": "CRM.pth",
|
94 |
}
|
|
|
95 |
|
96 |
+
os.makedirs("models", exist_ok=True)
|
|
|
|
|
97 |
|
98 |
+
for filename, output_path in model_files.items():
|
99 |
+
file_path = f"models/{output_path}"
|
100 |
+
if not os.path.exists(file_path):
|
101 |
+
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
print(f"Downloading {filename}...")
|
103 |
+
response = requests.get(url)
|
104 |
+
with open(file_path, "wb") as f:
|
105 |
+
f.write(response.content)
|
106 |
+
|
107 |
+
# Load model (This part depends on how the model is defined)
|
108 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
+
|
110 |
+
def load_model():
|
111 |
+
model_path = "models/CRM.pth"
|
112 |
+
model = torch.load(model_path, map_location=device)
|
113 |
+
model.eval()
|
114 |
+
return model
|
115 |
+
|
116 |
+
model = load_model()
|
117 |
+
|
118 |
+
# Define inference function
|
119 |
+
def infer(image):
|
120 |
+
"""Process input image and return a reconstructed image."""
|
121 |
with torch.no_grad():
|
122 |
+
# Assuming model expects a tensor input
|
123 |
+
image_tensor = torch.tensor(image).to(device)
|
124 |
+
output = model(image_tensor)
|
125 |
+
return output.cpu().numpy()
|
126 |
|
127 |
+
# Create Gradio UI
|
128 |
demo = gr.Interface(
|
129 |
+
fn=infer,
|
130 |
+
inputs=gr.Image(type="numpy"),
|
131 |
+
outputs=gr.Image(type="numpy"),
|
132 |
+
title="Convolutional Reconstruction Model",
|
133 |
+
description="Upload an image to get the reconstructed output."
|
134 |
)
|
135 |
|
136 |
if __name__ == "__main__":
|