Spaces:
Runtime error
Runtime error
Upload libs/base_utils.py with huggingface_hub
Browse files- libs/base_utils.py +392 -83
libs/base_utils.py
CHANGED
|
@@ -1,84 +1,393 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import cv2
|
| 3 |
-
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
if
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
return
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
return (img * 255).astype(np.uint8)
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import os
|
| 9 |
+
import shutil
|
| 10 |
+
from absl import logging
|
| 11 |
+
import sys
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
from omegaconf import OmegaConf
|
| 15 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
| 16 |
+
import datetime
|
| 17 |
+
import os.path as osp
|
| 18 |
+
import torch.distributed as dist
|
| 19 |
+
import builtins
|
| 20 |
+
import accelerate
|
| 21 |
+
import wandb
|
| 22 |
+
import re
|
| 23 |
+
from diffusers.training_utils import EMAModel
|
| 24 |
+
from rich import print
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_obj_from_str(string, reload=False):
|
| 28 |
+
import importlib
|
| 29 |
+
module, cls = string.rsplit(".", 1)
|
| 30 |
+
if reload:
|
| 31 |
+
module_imp = importlib.import_module(module)
|
| 32 |
+
importlib.reload(module_imp)
|
| 33 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def tensor_detail(t):
|
| 37 |
+
assert type(t) == torch.Tensor
|
| 38 |
+
print(f"shape: {t.shape} mean: {t.mean():.2f}, std: {t.std():.2f}, min: {t.min():.2f}, max: {t.max():.2f}")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def instantiate_from_config(config):
|
| 42 |
+
if not "target" in config:
|
| 43 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 44 |
+
model = get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 45 |
+
if config.get("resume", False):
|
| 46 |
+
print(f"resume from: {config.get('resume')}")
|
| 47 |
+
if os.path.isfile(config.get("resume")):
|
| 48 |
+
model.load_state_dict(torch.load(config["resume"], map_location="cpu"))
|
| 49 |
+
elif os.path.isdir(config.get("resume")) and hasattr(model, "from_pretrained"):
|
| 50 |
+
model.from_pretrained(config.get("resume"))
|
| 51 |
+
else:
|
| 52 |
+
raise Exception("could not resume")
|
| 53 |
+
return model
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def set_logger(log_level='info', fname=None):
|
| 57 |
+
import logging as _logging
|
| 58 |
+
handler = logging.get_absl_handler()
|
| 59 |
+
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
|
| 60 |
+
handler.setFormatter(formatter)
|
| 61 |
+
logging.set_verbosity(log_level)
|
| 62 |
+
if fname is not None:
|
| 63 |
+
handler = _logging.FileHandler(fname)
|
| 64 |
+
handler.setFormatter(formatter)
|
| 65 |
+
logging.get_absl_logger().addHandler(handler)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def dct2str(dct):
|
| 69 |
+
return str({k: f'{v:.6g}' for k, v in dct.items()})
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def copy_files_by_suffix(source_dir, target_dir, suffixes=[".py"], exclude_dirs=[]):
|
| 74 |
+
# Walk through the directory tree
|
| 75 |
+
for root, _, files in os.walk(source_dir):
|
| 76 |
+
if any(exclude_dir in root for exclude_dir in exclude_dirs):
|
| 77 |
+
continue
|
| 78 |
+
for file in files:
|
| 79 |
+
# Check if the file has one of the specified suffixes
|
| 80 |
+
if any(file.endswith(suffix) for suffix in suffixes):
|
| 81 |
+
# Construct the source and target paths
|
| 82 |
+
source_path = os.path.join(root, file)
|
| 83 |
+
relative_path = os.path.relpath(source_path, source_dir)
|
| 84 |
+
target_path = os.path.join(target_dir, relative_path)
|
| 85 |
+
|
| 86 |
+
# Ensure the target directory exists
|
| 87 |
+
os.makedirs(os.path.dirname(target_path), exist_ok=True)
|
| 88 |
+
|
| 89 |
+
# Copy the file
|
| 90 |
+
shutil.copyfile(source_path, target_path)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def find_latest_step(regex, ckpt_root):
|
| 95 |
+
if not isinstance(regex, re.Pattern):
|
| 96 |
+
regex = re.compile(regex)
|
| 97 |
+
ints = []
|
| 98 |
+
for file in os.listdir(ckpt_root):
|
| 99 |
+
if re.match(regex, file):
|
| 100 |
+
ints.append(int(re.findall(r'\d+', file)[0]))
|
| 101 |
+
if len(ints) == 0:
|
| 102 |
+
raise FileNotFoundError(f"no file match {regex} in {ckpt_root}")
|
| 103 |
+
return max(ints)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def resume_from_workdir(config, accelerator, model_context, ema_context):
|
| 107 |
+
if config.get("resume", False):
|
| 108 |
+
with PrintContext(f"resume from {config.workdir}", accelerator.is_main_process):
|
| 109 |
+
for name in config.save_models:
|
| 110 |
+
max_step = find_latest_step(f"{name}-(\d+).pt", config.ckpt_root)
|
| 111 |
+
print(f"resume from {name}-{max_step}.pt")
|
| 112 |
+
model_context[name].load_state_dict(
|
| 113 |
+
torch.load(osp.join(config.ckpt_root, f"{name}-{max_step}.pt"),
|
| 114 |
+
map_location="cpu")
|
| 115 |
+
)
|
| 116 |
+
for k, ema in ema_context.items():
|
| 117 |
+
max_step = find_latest_step(f"{k}-ema-(\d+).pt", config.ckpt_root)
|
| 118 |
+
print(f"resume from {k}-ema-{max_step}.pt")
|
| 119 |
+
ema.load_state_dict(
|
| 120 |
+
torch.load(osp.join(config.ckpt_root, f"{k}-ema-{max_step}.pt"),
|
| 121 |
+
map_location="cpu")
|
| 122 |
+
)
|
| 123 |
+
ema.to(accelerator.device)
|
| 124 |
+
return max_step
|
| 125 |
+
else:
|
| 126 |
+
return 0
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_model_context(models, device, dtype):
|
| 130 |
+
model_context = dict()
|
| 131 |
+
for key, model_config in models.items():
|
| 132 |
+
model = instantiate_from_config(model_config)
|
| 133 |
+
if hasattr(model, "device"):
|
| 134 |
+
try:
|
| 135 |
+
model.device = device
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(e)
|
| 138 |
+
print('passing set device')
|
| 139 |
+
if "t5" in type(model).__name__.lower() and isinstance(model, nn.Module):
|
| 140 |
+
# T5 model has a bug that it when using fp16
|
| 141 |
+
print(f"{'passing t5 model':-^72}")
|
| 142 |
+
model_context[key] = model.to(device)
|
| 143 |
+
continue
|
| 144 |
+
if isinstance(model, nn.Module):
|
| 145 |
+
model_context[key] = model.to(device=device, dtype=dtype)
|
| 146 |
+
else:
|
| 147 |
+
model_context[key] = model
|
| 148 |
+
model_context["device"] = device
|
| 149 |
+
model_context["dtype"] = dtype
|
| 150 |
+
return model_context
|
| 151 |
+
|
| 152 |
+
def get_ema_context(model_context, emas):
|
| 153 |
+
"""given config of ema models and model context, return an ema_context
|
| 154 |
+
contains all ema model in the current train process
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
model_context (dict): dict of names, point to pytroch models
|
| 158 |
+
emas (dict): dict of name, point to ema model, name was same with
|
| 159 |
+
"""
|
| 160 |
+
ema_context = dict()
|
| 161 |
+
if emas is None:
|
| 162 |
+
return ema_context
|
| 163 |
+
for ema_item in emas:
|
| 164 |
+
name = ema_item["name"]
|
| 165 |
+
ema_context[name] = EMAModel(model_context[name].parameters(), **ema_item.params)
|
| 166 |
+
return ema_context
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def get_data_context(data, accelerator=None):
|
| 170 |
+
data_context = dict()
|
| 171 |
+
for key, data_config in data.items():
|
| 172 |
+
dataset = instantiate_from_config(data_config.dataset)
|
| 173 |
+
if data_config.get("distributed_sampler", False):
|
| 174 |
+
sampler_cls = get_obj_from_str(data_config.distributed_sampler.target)
|
| 175 |
+
distributed_sampler = sampler_cls(
|
| 176 |
+
dataset,
|
| 177 |
+
num_replicas=accelerator.num_processes if accelerator is not None else 1,
|
| 178 |
+
rank=accelerator.process_index if accelerator is not None else 0,
|
| 179 |
+
**data_config.distributed_sampler.params
|
| 180 |
+
)
|
| 181 |
+
dataloader = DataLoader(dataset, sampler=distributed_sampler, **data_config.dataloader)
|
| 182 |
+
else:
|
| 183 |
+
dataloader = DataLoader(dataset, **data_config.dataloader)
|
| 184 |
+
data_context[key] = dataloader
|
| 185 |
+
data_context[key + "_generator"] = get_data_generator(dataloader, accelerator.is_main_process if accelerator is not None else True, key)
|
| 186 |
+
data_context[key + "_dataset"] = dataset
|
| 187 |
+
return data_context
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class Unimodel(torch.nn.Module):
|
| 191 |
+
def __init__(self, *args, **kwargs):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self._module_list = nn.ModuleList(*args)
|
| 194 |
+
for k, v in kwargs.items():
|
| 195 |
+
setattr(self, k, v)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def config_optimizer(model_context, optimizer_models, default_opt_params):
|
| 199 |
+
"""
|
| 200 |
+
model_context: dict of model instances
|
| 201 |
+
optimizer_models: list of dict, each dict contains model name and modules
|
| 202 |
+
default_opt_params: dict of default optimizer parameters
|
| 203 |
+
"""
|
| 204 |
+
default_opt_params = dict(default_opt_params)
|
| 205 |
+
param_groups = []
|
| 206 |
+
for model_config in optimizer_models:
|
| 207 |
+
model = model_context[model_config["name"]]
|
| 208 |
+
if model_config.get("modules", None) is None: # all model when no sub modules specified
|
| 209 |
+
model.requires_grad_(True)
|
| 210 |
+
print(f"using all modules of {model_config['name']}")
|
| 211 |
+
para_dict = default_opt_params.copy()
|
| 212 |
+
opt_params = model_config.get("opt_params", dict())
|
| 213 |
+
para_dict.update(opt_params)
|
| 214 |
+
para_dict["params"] = list(model.parameters())
|
| 215 |
+
param_groups.append(para_dict)
|
| 216 |
+
else:
|
| 217 |
+
model.requires_grad_(False)
|
| 218 |
+
for module_config in model_config["modules"]:
|
| 219 |
+
para_dict = default_opt_params.copy()
|
| 220 |
+
params = []
|
| 221 |
+
for name, param in model.named_parameters():
|
| 222 |
+
if module_config["name"] in name:
|
| 223 |
+
print(name)
|
| 224 |
+
param.requires_grad = True
|
| 225 |
+
params.append(param)
|
| 226 |
+
para_dict["params"] = params
|
| 227 |
+
opt_params = model_config.get("opt_params", dict())
|
| 228 |
+
para_dict.update(opt_params)
|
| 229 |
+
param_groups.append(para_dict)
|
| 230 |
+
return param_groups
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def cnt_params(model):
|
| 234 |
+
return sum(param.numel() for param in model.parameters())
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def get_hparams(input_args=None):
|
| 238 |
+
argv = sys.argv if input_args is None else input_args
|
| 239 |
+
lst = []
|
| 240 |
+
for i in range(len(argv)):
|
| 241 |
+
if argv[i].startswith('config.'):
|
| 242 |
+
hparam_full, val = argv[i].split('=')
|
| 243 |
+
hparam = hparam_full.split('.')[-1]
|
| 244 |
+
lst.append(f'{hparam}={val}')
|
| 245 |
+
hparams = '-'.join(lst)
|
| 246 |
+
if hparams == '':
|
| 247 |
+
hparams = 'default'
|
| 248 |
+
return hparams
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def add_prefix(dct, prefix):
|
| 252 |
+
return {f'{prefix}/{key}': val for key, val in dct.items()}
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def grad_norm(model):
|
| 256 |
+
total_norm = 0.
|
| 257 |
+
for p in model.parameters():
|
| 258 |
+
if p.grad is not None:
|
| 259 |
+
param_norm = p.grad.data.norm(2)
|
| 260 |
+
total_norm += param_norm.item() ** 2
|
| 261 |
+
total_norm = total_norm ** (1. / 2)
|
| 262 |
+
return total_norm
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def param_norm(model):
|
| 266 |
+
total_norm = 0.
|
| 267 |
+
for p in model.parameters():
|
| 268 |
+
param_norm = p.data.norm(2)
|
| 269 |
+
total_norm += param_norm.item() ** 2
|
| 270 |
+
total_norm = total_norm ** (1. / 2)
|
| 271 |
+
return total_norm
|
| 272 |
+
|
| 273 |
+
class PrintContext(object):
|
| 274 |
+
def __init__(self, name, verbose=True):
|
| 275 |
+
self.name = name
|
| 276 |
+
self.verbose = verbose
|
| 277 |
+
|
| 278 |
+
def __enter__(self):
|
| 279 |
+
if self.verbose: print(f'{self.name} processing...')
|
| 280 |
+
|
| 281 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 282 |
+
if self.verbose: print(f'{self.name} done')
|
| 283 |
+
|
| 284 |
+
def time_to_tensor(now: datetime.datetime):
|
| 285 |
+
return torch.tensor([now.year, now.month, now.day, now.hour, now.minute, now.second], dtype=torch.long)
|
| 286 |
+
|
| 287 |
+
def tensor_to_time(t: torch.Tensor):
|
| 288 |
+
return datetime.datetime(*t.tolist())
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def setup(config, unk):
|
| 293 |
+
accelerator = accelerate.Accelerator(gradient_accumulation_steps=config.gradient_accumulation_steps)
|
| 294 |
+
device = accelerator.device
|
| 295 |
+
accelerate.utils.set_seed(config.seed, device_specific=True)
|
| 296 |
+
|
| 297 |
+
# sync time for all processes
|
| 298 |
+
g_handler = dist.new_group(backend='gloo')
|
| 299 |
+
now = time_to_tensor(datetime.datetime.now())
|
| 300 |
+
dist.broadcast(now, src=0, group=g_handler)
|
| 301 |
+
now = tensor_to_time(now).strftime("%Y-%m-%dT%H-%M-%S")
|
| 302 |
+
print("unknow args: ", unk, get_hparams(unk))
|
| 303 |
+
|
| 304 |
+
if config.get("workdir", None) is None:
|
| 305 |
+
config.workdir = osp.join(config.logdir, f"{config.config_name}-{get_hparams(unk)}-{now}")
|
| 306 |
+
print(f"{'workdir: ' + config.workdir:-^72}")
|
| 307 |
+
config.ckpt_root = osp.join(config.workdir, 'ckpts')
|
| 308 |
+
config.eval_root = osp.join(config.workdir, "eval")
|
| 309 |
+
config.eval_root2 = osp.join(config.workdir, "eval2")
|
| 310 |
+
|
| 311 |
+
if accelerator.is_main_process:
|
| 312 |
+
os.makedirs(config.workdir, exist_ok=True)
|
| 313 |
+
os.makedirs(config.ckpt_root, exist_ok=True)
|
| 314 |
+
os.makedirs(config.eval_root, exist_ok=True)
|
| 315 |
+
os.makedirs(config.eval_root2, exist_ok=True)
|
| 316 |
+
|
| 317 |
+
config.meta_dir = osp.join(config.workdir, f"meta-{now}")
|
| 318 |
+
copy_files_by_suffix(os.getcwd(), config.meta_dir, exclude_dirs=[config.logdir], suffixes=[".py", ".yaml"])
|
| 319 |
+
|
| 320 |
+
with open(osp.join(config.meta_dir, "config.yaml"), "w") as f:
|
| 321 |
+
f.write(OmegaConf.to_yaml(config))
|
| 322 |
+
|
| 323 |
+
wandb.init(dir=os.path.abspath(config.workdir), project=config.project, config=dict(config),
|
| 324 |
+
name=config.wandb_run_name, job_type='train', mode=config.wandb_mode, group="DDP")
|
| 325 |
+
if accelerator.is_main_process:
|
| 326 |
+
set_logger(log_level='info', fname=os.path.join(config.workdir, 'output.log'))
|
| 327 |
+
print(OmegaConf.to_yaml(config))
|
| 328 |
+
else:
|
| 329 |
+
set_logger(log_level='error')
|
| 330 |
+
builtins.print = lambda *args: None
|
| 331 |
+
|
| 332 |
+
assert not ('total_batch_size' in config and 'batch_size' in config)
|
| 333 |
+
if 'total_batch_size' not in config:
|
| 334 |
+
config.total_batch_size = config.batch_size * accelerator.num_processes
|
| 335 |
+
if 'batch_size' not in config:
|
| 336 |
+
assert config.total_batch_size % accelerator.num_processes == 0
|
| 337 |
+
config.batch_size = config.total_batch_size // accelerator.num_processes
|
| 338 |
+
if 'total_logical_batch_size' not in config:
|
| 339 |
+
config.total_logical_batch_size = config.total_batch_size * config.gradient_accumulation_steps
|
| 340 |
+
|
| 341 |
+
logging.info(f'Run on {accelerator.num_processes} devices')
|
| 342 |
+
|
| 343 |
+
return accelerator, device
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def get_data_generator(loader, enable_tqdm, desc):
|
| 347 |
+
while True:
|
| 348 |
+
for data in tqdm(loader, disable=not enable_tqdm, desc=desc):
|
| 349 |
+
yield data
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def do_resize_content(original_image: Image, scale_rate):
|
| 353 |
+
# resize image content wile retain the original image size
|
| 354 |
+
if scale_rate != 1:
|
| 355 |
+
# Calculate the new size after rescaling
|
| 356 |
+
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
| 357 |
+
# Resize the image while maintaining the aspect ratio
|
| 358 |
+
resized_image = original_image.resize(new_size)
|
| 359 |
+
# Create a new image with the original size and black background
|
| 360 |
+
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
| 361 |
+
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
| 362 |
+
padded_image.paste(resized_image, paste_position)
|
| 363 |
+
return padded_image
|
| 364 |
+
else:
|
| 365 |
+
return original_image
|
| 366 |
+
|
| 367 |
+
def add_stroke(img, color=(255, 255, 255), stroke_radius=3):
|
| 368 |
+
# color in R, G, B format
|
| 369 |
+
if isinstance(img, Image.Image):
|
| 370 |
+
assert img.mode == "RGBA"
|
| 371 |
+
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA)
|
| 372 |
+
else:
|
| 373 |
+
assert img.shape[2] == 4
|
| 374 |
+
gray = img[:,:, 3]
|
| 375 |
+
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
|
| 376 |
+
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
| 377 |
+
res = cv2.drawContours(img, contours,-1, tuple(color)[::-1] + (255,), stroke_radius)
|
| 378 |
+
return Image.fromarray(cv2.cvtColor(res,cv2.COLOR_BGRA2RGBA))
|
| 379 |
+
|
| 380 |
+
def make_blob(image_size=(512, 512), sigma=0.2):
|
| 381 |
+
"""
|
| 382 |
+
make 2D blob image with:
|
| 383 |
+
I(x, y)=1-\exp \left(-\frac{(x-H / 2)^2+(y-W / 2)^2}{2 \sigma^2 HS}\right)
|
| 384 |
+
"""
|
| 385 |
+
import numpy as np
|
| 386 |
+
H, W = image_size
|
| 387 |
+
x = np.arange(0, W, 1, float)
|
| 388 |
+
y = np.arange(0, H, 1, float)
|
| 389 |
+
x, y = np.meshgrid(x, y)
|
| 390 |
+
x0 = W // 2
|
| 391 |
+
y0 = H // 2
|
| 392 |
+
img = 1 - np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2 * H * W))
|
| 393 |
return (img * 255).astype(np.uint8)
|