Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -266,20 +266,93 @@
|
|
266 |
# demo.launch()
|
267 |
|
268 |
|
269 |
-
#############6th##################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
import torch
|
|
|
271 |
import gradio as gr
|
272 |
import requests
|
273 |
import os
|
|
|
274 |
import numpy as np
|
|
|
275 |
|
276 |
# Hugging Face Model Repository
|
277 |
model_repo = "Mariam-Elz/CRM"
|
278 |
|
279 |
-
#
|
280 |
model_path = "models/CRM.pth"
|
281 |
os.makedirs("models", exist_ok=True)
|
282 |
|
|
|
283 |
if not os.path.exists(model_path):
|
284 |
url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
285 |
print(f"Downloading CRM.pth...")
|
@@ -287,51 +360,81 @@ if not os.path.exists(model_path):
|
|
287 |
with open(model_path, "wb") as f:
|
288 |
f.write(response.content)
|
289 |
|
290 |
-
# Set Device
|
291 |
-
device = "cpu"
|
292 |
-
|
293 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
def load_model():
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
return model
|
299 |
|
300 |
-
# Load model
|
301 |
model = load_model()
|
302 |
|
303 |
-
# Define Inference Function
|
304 |
def infer(image):
|
305 |
-
"""Process input image and return a reconstructed
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
# Create Gradio UI
|
325 |
demo = gr.Interface(
|
326 |
fn=infer,
|
327 |
-
inputs=gr.Image(type="
|
328 |
outputs=gr.Image(type="numpy"),
|
329 |
-
title="
|
330 |
-
description="Upload an image to get the reconstructed output
|
331 |
)
|
332 |
|
333 |
if __name__ == "__main__":
|
334 |
demo.launch()
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
266 |
# demo.launch()
|
267 |
|
268 |
|
269 |
+
#############6th-worked-proc##################
|
270 |
+
# import torch
|
271 |
+
# import gradio as gr
|
272 |
+
# import requests
|
273 |
+
# import os
|
274 |
+
# import numpy as np
|
275 |
+
|
276 |
+
# # Hugging Face Model Repository
|
277 |
+
# model_repo = "Mariam-Elz/CRM"
|
278 |
+
|
279 |
+
# # Download Model Weights (Only CRM.pth to Save Memory)
|
280 |
+
# model_path = "models/CRM.pth"
|
281 |
+
# os.makedirs("models", exist_ok=True)
|
282 |
+
|
283 |
+
# if not os.path.exists(model_path):
|
284 |
+
# url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
285 |
+
# print(f"Downloading CRM.pth...")
|
286 |
+
# response = requests.get(url)
|
287 |
+
# with open(model_path, "wb") as f:
|
288 |
+
# f.write(response.content)
|
289 |
+
|
290 |
+
# # Set Device (Use CPU to Reduce RAM Usage)
|
291 |
+
# device = "cpu"
|
292 |
+
|
293 |
+
# # Load Model Efficiently
|
294 |
+
# def load_model():
|
295 |
+
# model = torch.load(model_path, map_location=device)
|
296 |
+
# if isinstance(model, torch.nn.Module):
|
297 |
+
# model.eval() # Ensure model is in inference mode
|
298 |
+
# return model
|
299 |
+
|
300 |
+
# # Load model only when needed (saves memory)
|
301 |
+
# model = load_model()
|
302 |
+
|
303 |
+
# # Define Inference Function with Memory Optimizations
|
304 |
+
# def infer(image):
|
305 |
+
# """Process input image and return a reconstructed image."""
|
306 |
+
# with torch.no_grad():
|
307 |
+
# # Convert image to torch tensor & normalize (float16 to save RAM)
|
308 |
+
# image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
|
309 |
+
# image_tensor = image_tensor.to(device)
|
310 |
+
|
311 |
+
# # Model Inference
|
312 |
+
# output = model(image_tensor)
|
313 |
+
|
314 |
+
# # Convert back to numpy image format
|
315 |
+
# output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0
|
316 |
+
# output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
317 |
+
|
318 |
+
# # Free Memory
|
319 |
+
# del image_tensor, output
|
320 |
+
# torch.cuda.empty_cache()
|
321 |
+
|
322 |
+
# return output_image
|
323 |
+
|
324 |
+
# # Create Gradio UI
|
325 |
+
# demo = gr.Interface(
|
326 |
+
# fn=infer,
|
327 |
+
# inputs=gr.Image(type="numpy"),
|
328 |
+
# outputs=gr.Image(type="numpy"),
|
329 |
+
# title="Optimized Convolutional Reconstruction Model",
|
330 |
+
# description="Upload an image to get the reconstructed output with reduced memory usage."
|
331 |
+
# )
|
332 |
+
|
333 |
+
# if __name__ == "__main__":
|
334 |
+
# demo.launch()
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
#############7tth################
|
339 |
import torch
|
340 |
+
import torch.nn as nn
|
341 |
import gradio as gr
|
342 |
import requests
|
343 |
import os
|
344 |
+
import torchvision.transforms as transforms
|
345 |
import numpy as np
|
346 |
+
from PIL import Image
|
347 |
|
348 |
# Hugging Face Model Repository
|
349 |
model_repo = "Mariam-Elz/CRM"
|
350 |
|
351 |
+
# Model File Path
|
352 |
model_path = "models/CRM.pth"
|
353 |
os.makedirs("models", exist_ok=True)
|
354 |
|
355 |
+
# Download model weights if not present
|
356 |
if not os.path.exists(model_path):
|
357 |
url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
358 |
print(f"Downloading CRM.pth...")
|
|
|
360 |
with open(model_path, "wb") as f:
|
361 |
f.write(response.content)
|
362 |
|
363 |
+
# Set Device
|
364 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
365 |
+
|
366 |
+
# Define Model Architecture (Replace with your actual model)
|
367 |
+
class CRMModel(nn.Module):
|
368 |
+
def __init__(self):
|
369 |
+
super(CRMModel, self).__init__()
|
370 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
371 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
372 |
+
self.relu = nn.ReLU()
|
373 |
+
|
374 |
+
def forward(self, x):
|
375 |
+
x = self.relu(self.conv1(x))
|
376 |
+
x = self.relu(self.conv2(x))
|
377 |
+
return x
|
378 |
+
|
379 |
+
# Load Model
|
380 |
def load_model():
|
381 |
+
print("Loading model...")
|
382 |
+
model = CRMModel() # Use the correct architecture here
|
383 |
+
state_dict = torch.load(model_path, map_location=device)
|
384 |
+
|
385 |
+
if isinstance(state_dict, dict): # Ensure it's a valid state_dict
|
386 |
+
model.load_state_dict(state_dict)
|
387 |
+
else:
|
388 |
+
raise ValueError("Error: The loaded state_dict is not in the correct format.")
|
389 |
+
|
390 |
+
model.to(device)
|
391 |
+
model.eval()
|
392 |
+
print("Model loaded successfully!")
|
393 |
return model
|
394 |
|
395 |
+
# Load the model
|
396 |
model = load_model()
|
397 |
|
398 |
+
# Define Inference Function
|
399 |
def infer(image):
|
400 |
+
"""Process input image and return a reconstructed 3D output."""
|
401 |
+
try:
|
402 |
+
print("Preprocessing image...")
|
403 |
+
|
404 |
+
# Convert image to PyTorch tensor & normalize
|
405 |
+
transform = transforms.Compose([
|
406 |
+
transforms.Resize((256, 256)), # Resize to fit model input
|
407 |
+
transforms.ToTensor(), # Converts to tensor (C, H, W)
|
408 |
+
transforms.Normalize(mean=[0.5], std=[0.5]), # Normalize
|
409 |
+
])
|
410 |
+
image_tensor = transform(image).unsqueeze(0).to(device) # Add batch dimension
|
411 |
+
|
412 |
+
print("Running inference...")
|
413 |
+
with torch.no_grad():
|
414 |
+
output = model(image_tensor) # Forward pass
|
415 |
+
|
416 |
+
# Ensure output is a valid tensor
|
417 |
+
if isinstance(output, torch.Tensor):
|
418 |
+
output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
419 |
+
output_image = np.clip(output_image * 255.0, 0, 255).astype(np.uint8)
|
420 |
+
print("Inference complete! Returning output.")
|
421 |
+
return output_image
|
422 |
+
else:
|
423 |
+
print("Error: Model output is not a tensor.")
|
424 |
+
return None
|
425 |
+
|
426 |
+
except Exception as e:
|
427 |
+
print(f"Error during inference: {e}")
|
428 |
+
return None
|
429 |
|
430 |
# Create Gradio UI
|
431 |
demo = gr.Interface(
|
432 |
fn=infer,
|
433 |
+
inputs=gr.Image(type="pil"),
|
434 |
outputs=gr.Image(type="numpy"),
|
435 |
+
title="Convolutional Reconstruction Model",
|
436 |
+
description="Upload an image to get the reconstructed output."
|
437 |
)
|
438 |
|
439 |
if __name__ == "__main__":
|
440 |
demo.launch()
|
|
|
|
|
|