Spaces:
Runtime error
Runtime error
Upload model/archs/unet.py with huggingface_hub
Browse files- model/archs/unet.py +53 -53
model/archs/unet.py
CHANGED
|
@@ -1,53 +1,53 @@
|
|
| 1 |
-
'''
|
| 2 |
-
Codes are from:
|
| 3 |
-
https://github.com/jaxony/unet-pytorch/blob/master/model.py
|
| 4 |
-
'''
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
from diffusers import UNet2DModel
|
| 9 |
-
import einops
|
| 10 |
-
class UNetPP(nn.Module):
|
| 11 |
-
'''
|
| 12 |
-
Wrapper for UNet in diffusers
|
| 13 |
-
'''
|
| 14 |
-
def __init__(self, in_channels):
|
| 15 |
-
super(UNetPP, self).__init__()
|
| 16 |
-
self.in_channels = in_channels
|
| 17 |
-
self.unet = UNet2DModel(
|
| 18 |
-
sample_size=[256, 256*3],
|
| 19 |
-
in_channels=in_channels,
|
| 20 |
-
out_channels=32,
|
| 21 |
-
layers_per_block=2,
|
| 22 |
-
block_out_channels=(64, 128, 128, 128*2, 128*2, 128*4, 128*4),
|
| 23 |
-
down_block_types=(
|
| 24 |
-
"DownBlock2D",
|
| 25 |
-
"DownBlock2D",
|
| 26 |
-
"DownBlock2D",
|
| 27 |
-
"AttnDownBlock2D",
|
| 28 |
-
"AttnDownBlock2D",
|
| 29 |
-
"AttnDownBlock2D",
|
| 30 |
-
"DownBlock2D",
|
| 31 |
-
),
|
| 32 |
-
up_block_types=(
|
| 33 |
-
"UpBlock2D",
|
| 34 |
-
"AttnUpBlock2D",
|
| 35 |
-
"AttnUpBlock2D",
|
| 36 |
-
"AttnUpBlock2D",
|
| 37 |
-
"UpBlock2D",
|
| 38 |
-
"UpBlock2D",
|
| 39 |
-
"UpBlock2D",
|
| 40 |
-
),
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
if in_channels > 12:
|
| 45 |
-
self.learned_plane = torch.nn.parameter.Parameter(torch.zeros([1,in_channels-12,256,256*3]))
|
| 46 |
-
|
| 47 |
-
def forward(self, x, t=256):
|
| 48 |
-
learned_plane = self.learned_plane
|
| 49 |
-
if x.shape[1] < self.in_channels:
|
| 50 |
-
learned_plane = einops.repeat(learned_plane, '1 C H W -> B C H W', B=x.shape[0]).to(x.device)
|
| 51 |
-
x = torch.cat([x, learned_plane], dim = 1)
|
| 52 |
-
return self.unet(x, t).sample
|
| 53 |
-
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
Codes are from:
|
| 3 |
+
https://github.com/jaxony/unet-pytorch/blob/master/model.py
|
| 4 |
+
'''
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from diffusers import UNet2DModel
|
| 9 |
+
import einops
|
| 10 |
+
class UNetPP(nn.Module):
|
| 11 |
+
'''
|
| 12 |
+
Wrapper for UNet in diffusers
|
| 13 |
+
'''
|
| 14 |
+
def __init__(self, in_channels):
|
| 15 |
+
super(UNetPP, self).__init__()
|
| 16 |
+
self.in_channels = in_channels
|
| 17 |
+
self.unet = UNet2DModel(
|
| 18 |
+
sample_size=[256, 256*3],
|
| 19 |
+
in_channels=in_channels,
|
| 20 |
+
out_channels=32,
|
| 21 |
+
layers_per_block=2,
|
| 22 |
+
block_out_channels=(64, 128, 128, 128*2, 128*2, 128*4, 128*4),
|
| 23 |
+
down_block_types=(
|
| 24 |
+
"DownBlock2D",
|
| 25 |
+
"DownBlock2D",
|
| 26 |
+
"DownBlock2D",
|
| 27 |
+
"AttnDownBlock2D",
|
| 28 |
+
"AttnDownBlock2D",
|
| 29 |
+
"AttnDownBlock2D",
|
| 30 |
+
"DownBlock2D",
|
| 31 |
+
),
|
| 32 |
+
up_block_types=(
|
| 33 |
+
"UpBlock2D",
|
| 34 |
+
"AttnUpBlock2D",
|
| 35 |
+
"AttnUpBlock2D",
|
| 36 |
+
"AttnUpBlock2D",
|
| 37 |
+
"UpBlock2D",
|
| 38 |
+
"UpBlock2D",
|
| 39 |
+
"UpBlock2D",
|
| 40 |
+
),
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
self.unet.enable_xformers_memory_efficient_attention()
|
| 44 |
+
if in_channels > 12:
|
| 45 |
+
self.learned_plane = torch.nn.parameter.Parameter(torch.zeros([1,in_channels-12,256,256*3]))
|
| 46 |
+
|
| 47 |
+
def forward(self, x, t=256):
|
| 48 |
+
learned_plane = self.learned_plane
|
| 49 |
+
if x.shape[1] < self.in_channels:
|
| 50 |
+
learned_plane = einops.repeat(learned_plane, '1 C H W -> B C H W', B=x.shape[0]).to(x.device)
|
| 51 |
+
x = torch.cat([x, learned_plane], dim = 1)
|
| 52 |
+
return self.unet(x, t).sample
|
| 53 |
+
|