Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -79,37 +79,93 @@
|
|
79 |
# demo.launch()
|
80 |
########################3rd######################3
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
import torch
|
83 |
import gradio as gr
|
84 |
import requests
|
85 |
import os
|
86 |
|
87 |
-
#
|
88 |
-
model_repo = "Mariam-Elz/CRM"
|
89 |
|
|
|
90 |
model_files = {
|
91 |
-
"
|
92 |
-
"pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
-
"CRM.pth": "CRM.pth",
|
94 |
}
|
95 |
|
96 |
os.makedirs("models", exist_ok=True)
|
97 |
|
|
|
98 |
for filename, output_path in model_files.items():
|
99 |
-
|
100 |
-
if not os.path.exists(file_path):
|
101 |
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
print(f"Downloading {filename}...")
|
103 |
response = requests.get(url)
|
104 |
-
with open(
|
105 |
f.write(response.content)
|
106 |
|
107 |
-
# Load model
|
108 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
-
|
110 |
def load_model():
|
111 |
model_path = "models/CRM.pth"
|
112 |
-
model = torch.load(model_path, map_location=
|
113 |
model.eval()
|
114 |
return model
|
115 |
|
@@ -119,10 +175,10 @@ model = load_model()
|
|
119 |
def infer(image):
|
120 |
"""Process input image and return a reconstructed image."""
|
121 |
with torch.no_grad():
|
122 |
-
|
123 |
-
image_tensor =
|
124 |
output = model(image_tensor)
|
125 |
-
return output.
|
126 |
|
127 |
# Create Gradio UI
|
128 |
demo = gr.Interface(
|
|
|
79 |
# demo.launch()
|
80 |
########################3rd######################3
|
81 |
|
82 |
+
# import torch
|
83 |
+
# import gradio as gr
|
84 |
+
# import requests
|
85 |
+
# import os
|
86 |
+
|
87 |
+
# # Download model weights from Hugging Face model repo (if not already present)
|
88 |
+
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
89 |
+
|
90 |
+
# model_files = {
|
91 |
+
# "ccm-diffusion.pth": "ccm-diffusion.pth",
|
92 |
+
# "pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
+
# "CRM.pth": "CRM.pth",
|
94 |
+
# }
|
95 |
+
|
96 |
+
# os.makedirs("models", exist_ok=True)
|
97 |
+
|
98 |
+
# for filename, output_path in model_files.items():
|
99 |
+
# file_path = f"models/{output_path}"
|
100 |
+
# if not os.path.exists(file_path):
|
101 |
+
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
+
# print(f"Downloading {filename}...")
|
103 |
+
# response = requests.get(url)
|
104 |
+
# with open(file_path, "wb") as f:
|
105 |
+
# f.write(response.content)
|
106 |
+
|
107 |
+
# # Load model (This part depends on how the model is defined)
|
108 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
+
|
110 |
+
# def load_model():
|
111 |
+
# model_path = "models/CRM.pth"
|
112 |
+
# model = torch.load(model_path, map_location=device)
|
113 |
+
# model.eval()
|
114 |
+
# return model
|
115 |
+
|
116 |
+
# model = load_model()
|
117 |
+
|
118 |
+
# # Define inference function
|
119 |
+
# def infer(image):
|
120 |
+
# """Process input image and return a reconstructed image."""
|
121 |
+
# with torch.no_grad():
|
122 |
+
# # Assuming model expects a tensor input
|
123 |
+
# image_tensor = torch.tensor(image).to(device)
|
124 |
+
# output = model(image_tensor)
|
125 |
+
# return output.cpu().numpy()
|
126 |
+
|
127 |
+
# # Create Gradio UI
|
128 |
+
# demo = gr.Interface(
|
129 |
+
# fn=infer,
|
130 |
+
# inputs=gr.Image(type="numpy"),
|
131 |
+
# outputs=gr.Image(type="numpy"),
|
132 |
+
# title="Convolutional Reconstruction Model",
|
133 |
+
# description="Upload an image to get the reconstructed output."
|
134 |
+
# )
|
135 |
+
|
136 |
+
# if __name__ == "__main__":
|
137 |
+
# demo.launch()
|
138 |
+
|
139 |
+
|
140 |
+
#################4th##################
|
141 |
import torch
|
142 |
import gradio as gr
|
143 |
import requests
|
144 |
import os
|
145 |
|
146 |
+
# Define model repo
|
147 |
+
model_repo = "Mariam-Elz/CRM"
|
148 |
|
149 |
+
# Define model files and download paths
|
150 |
model_files = {
|
151 |
+
"CRM.pth": "models/CRM.pth"
|
|
|
|
|
152 |
}
|
153 |
|
154 |
os.makedirs("models", exist_ok=True)
|
155 |
|
156 |
+
# Download model files only if they don't exist
|
157 |
for filename, output_path in model_files.items():
|
158 |
+
if not os.path.exists(output_path):
|
|
|
159 |
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
160 |
print(f"Downloading {filename}...")
|
161 |
response = requests.get(url)
|
162 |
+
with open(output_path, "wb") as f:
|
163 |
f.write(response.content)
|
164 |
|
165 |
+
# Load model with low memory usage
|
|
|
|
|
166 |
def load_model():
|
167 |
model_path = "models/CRM.pth"
|
168 |
+
model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage
|
169 |
model.eval()
|
170 |
return model
|
171 |
|
|
|
175 |
def infer(image):
|
176 |
"""Process input image and return a reconstructed image."""
|
177 |
with torch.no_grad():
|
178 |
+
image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension
|
179 |
+
image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory
|
180 |
output = model(image_tensor)
|
181 |
+
return output.squeeze(0).numpy()
|
182 |
|
183 |
# Create Gradio UI
|
184 |
demo = gr.Interface(
|