Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -77,7 +77,7 @@
|
|
77 |
|
78 |
# if __name__ == "__main__":
|
79 |
# demo.launch()
|
80 |
-
########################3rd######################3
|
81 |
|
82 |
# import torch
|
83 |
# import gradio as gr
|
@@ -138,7 +138,65 @@
|
|
138 |
|
139 |
|
140 |
#################4th##################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
import torch
|
|
|
142 |
import gradio as gr
|
143 |
import requests
|
144 |
import os
|
@@ -162,11 +220,26 @@ for filename, output_path in model_files.items():
|
|
162 |
with open(output_path, "wb") as f:
|
163 |
f.write(response.content)
|
164 |
|
165 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
def load_model():
|
|
|
167 |
model_path = "models/CRM.pth"
|
168 |
-
model
|
169 |
-
model.eval()
|
170 |
return model
|
171 |
|
172 |
model = load_model()
|
@@ -175,10 +248,10 @@ model = load_model()
|
|
175 |
def infer(image):
|
176 |
"""Process input image and return a reconstructed image."""
|
177 |
with torch.no_grad():
|
178 |
-
image_tensor = torch.tensor(image).unsqueeze(0) #
|
179 |
-
|
180 |
-
output =
|
181 |
-
return output.
|
182 |
|
183 |
# Create Gradio UI
|
184 |
demo = gr.Interface(
|
|
|
77 |
|
78 |
# if __name__ == "__main__":
|
79 |
# demo.launch()
|
80 |
+
########################3rd-MAIN######################3
|
81 |
|
82 |
# import torch
|
83 |
# import gradio as gr
|
|
|
138 |
|
139 |
|
140 |
#################4th##################
|
141 |
+
|
142 |
+
# import torch
|
143 |
+
# import gradio as gr
|
144 |
+
# import requests
|
145 |
+
# import os
|
146 |
+
|
147 |
+
# # Define model repo
|
148 |
+
# model_repo = "Mariam-Elz/CRM"
|
149 |
+
|
150 |
+
# # Define model files and download paths
|
151 |
+
# model_files = {
|
152 |
+
# "CRM.pth": "models/CRM.pth"
|
153 |
+
# }
|
154 |
+
|
155 |
+
# os.makedirs("models", exist_ok=True)
|
156 |
+
|
157 |
+
# # Download model files only if they don't exist
|
158 |
+
# for filename, output_path in model_files.items():
|
159 |
+
# if not os.path.exists(output_path):
|
160 |
+
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
161 |
+
# print(f"Downloading {filename}...")
|
162 |
+
# response = requests.get(url)
|
163 |
+
# with open(output_path, "wb") as f:
|
164 |
+
# f.write(response.content)
|
165 |
+
|
166 |
+
# # Load model with low memory usage
|
167 |
+
# def load_model():
|
168 |
+
# model_path = "models/CRM.pth"
|
169 |
+
# model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage
|
170 |
+
# model.eval()
|
171 |
+
# return model
|
172 |
+
|
173 |
+
# model = load_model()
|
174 |
+
|
175 |
+
# # Define inference function
|
176 |
+
# def infer(image):
|
177 |
+
# """Process input image and return a reconstructed image."""
|
178 |
+
# with torch.no_grad():
|
179 |
+
# image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension
|
180 |
+
# image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory
|
181 |
+
# output = model(image_tensor)
|
182 |
+
# return output.squeeze(0).numpy()
|
183 |
+
|
184 |
+
# # Create Gradio UI
|
185 |
+
# demo = gr.Interface(
|
186 |
+
# fn=infer,
|
187 |
+
# inputs=gr.Image(type="numpy"),
|
188 |
+
# outputs=gr.Image(type="numpy"),
|
189 |
+
# title="Convolutional Reconstruction Model",
|
190 |
+
# description="Upload an image to get the reconstructed output."
|
191 |
+
# )
|
192 |
+
|
193 |
+
# if __name__ == "__main__":
|
194 |
+
# demo.launch()
|
195 |
+
|
196 |
+
|
197 |
+
##############5TH#################
|
198 |
import torch
|
199 |
+
import torch.nn as nn
|
200 |
import gradio as gr
|
201 |
import requests
|
202 |
import os
|
|
|
220 |
with open(output_path, "wb") as f:
|
221 |
f.write(response.content)
|
222 |
|
223 |
+
# Define the model architecture (you MUST replace this with your actual model)
|
224 |
+
class CRM_Model(nn.Module):
|
225 |
+
def __init__(self):
|
226 |
+
super(CRM_Model, self).__init__()
|
227 |
+
self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
228 |
+
self.relu = nn.ReLU()
|
229 |
+
self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)
|
230 |
+
|
231 |
+
def forward(self, x):
|
232 |
+
x = self.layer1(x)
|
233 |
+
x = self.relu(x)
|
234 |
+
x = self.layer2(x)
|
235 |
+
return x
|
236 |
+
|
237 |
+
# Load model with proper architecture
|
238 |
def load_model():
|
239 |
+
model = CRM_Model() # Instantiate the model architecture
|
240 |
model_path = "models/CRM.pth"
|
241 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights
|
242 |
+
model.eval() # Set to evaluation mode
|
243 |
return model
|
244 |
|
245 |
model = load_model()
|
|
|
248 |
def infer(image):
|
249 |
"""Process input image and return a reconstructed image."""
|
250 |
with torch.no_grad():
|
251 |
+
image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor
|
252 |
+
output = model(image_tensor) # Run through model
|
253 |
+
output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image
|
254 |
+
return output.astype("uint8")
|
255 |
|
256 |
# Create Gradio UI
|
257 |
demo = gr.Interface(
|