Spaces:
Runtime error
Runtime error
Upload imagedream/ldm/modules/diffusionmodules/openaimodel.py with huggingface_hub
Browse files
imagedream/ldm/modules/diffusionmodules/openaimodel.py
CHANGED
|
@@ -1,1135 +1,1135 @@
|
|
| 1 |
-
from abc import abstractmethod
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
-
import numpy as np
|
| 5 |
-
import torch
|
| 6 |
-
import torch as th
|
| 7 |
-
import torch.nn as nn
|
| 8 |
-
import torch.nn.functional as F
|
| 9 |
-
from einops import rearrange, repeat
|
| 10 |
-
|
| 11 |
-
from imagedream.ldm.modules.diffusionmodules.util import (
|
| 12 |
-
checkpoint,
|
| 13 |
-
conv_nd,
|
| 14 |
-
linear,
|
| 15 |
-
avg_pool_nd,
|
| 16 |
-
zero_module,
|
| 17 |
-
normalization,
|
| 18 |
-
timestep_embedding,
|
| 19 |
-
convert_module_to_f16,
|
| 20 |
-
convert_module_to_f32
|
| 21 |
-
)
|
| 22 |
-
from imagedream.ldm.modules.attention import (
|
| 23 |
-
SpatialTransformer,
|
| 24 |
-
SpatialTransformer3D,
|
| 25 |
-
exists
|
| 26 |
-
)
|
| 27 |
-
from imagedream.ldm.modules.diffusionmodules.adaptors import (
|
| 28 |
-
Resampler,
|
| 29 |
-
ImageProjModel
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
## go
|
| 33 |
-
class AttentionPool2d(nn.Module):
|
| 34 |
-
"""
|
| 35 |
-
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
def __init__(
|
| 39 |
-
self,
|
| 40 |
-
spacial_dim: int,
|
| 41 |
-
embed_dim: int,
|
| 42 |
-
num_heads_channels: int,
|
| 43 |
-
output_dim: int = None,
|
| 44 |
-
):
|
| 45 |
-
super().__init__()
|
| 46 |
-
self.positional_embedding = nn.Parameter(
|
| 47 |
-
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
| 48 |
-
)
|
| 49 |
-
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 50 |
-
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 51 |
-
self.num_heads = embed_dim // num_heads_channels
|
| 52 |
-
self.attention = QKVAttention(self.num_heads)
|
| 53 |
-
|
| 54 |
-
def forward(self, x):
|
| 55 |
-
b, c, *_spatial = x.shape
|
| 56 |
-
x = x.reshape(b, c, -1) # NC(HW)
|
| 57 |
-
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 58 |
-
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 59 |
-
x = self.qkv_proj(x)
|
| 60 |
-
x = self.attention(x)
|
| 61 |
-
x = self.c_proj(x)
|
| 62 |
-
return x[:, :, 0]
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
class TimestepBlock(nn.Module):
|
| 66 |
-
"""
|
| 67 |
-
Any module where forward() takes timestep embeddings as a second argument.
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
@abstractmethod
|
| 71 |
-
def forward(self, x, emb):
|
| 72 |
-
"""
|
| 73 |
-
Apply the module to `x` given `emb` timestep embeddings.
|
| 74 |
-
"""
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 78 |
-
"""
|
| 79 |
-
A sequential module that passes timestep embeddings to the children that
|
| 80 |
-
support it as an extra input.
|
| 81 |
-
"""
|
| 82 |
-
|
| 83 |
-
def forward(self, x, emb, context=None, num_frames=1):
|
| 84 |
-
for layer in self:
|
| 85 |
-
if isinstance(layer, TimestepBlock):
|
| 86 |
-
x = layer(x, emb)
|
| 87 |
-
elif isinstance(layer, SpatialTransformer3D):
|
| 88 |
-
x = layer(x, context, num_frames=num_frames)
|
| 89 |
-
elif isinstance(layer, SpatialTransformer):
|
| 90 |
-
x = layer(x, context)
|
| 91 |
-
else:
|
| 92 |
-
x = layer(x)
|
| 93 |
-
return x
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
class Upsample(nn.Module):
|
| 97 |
-
"""
|
| 98 |
-
An upsampling layer with an optional convolution.
|
| 99 |
-
:param channels: channels in the inputs and outputs.
|
| 100 |
-
:param use_conv: a bool determining if a convolution is applied.
|
| 101 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 102 |
-
upsampling occurs in the inner-two dimensions.
|
| 103 |
-
"""
|
| 104 |
-
|
| 105 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 106 |
-
super().__init__()
|
| 107 |
-
self.channels = channels
|
| 108 |
-
self.out_channels = out_channels or channels
|
| 109 |
-
self.use_conv = use_conv
|
| 110 |
-
self.dims = dims
|
| 111 |
-
if use_conv:
|
| 112 |
-
self.conv = conv_nd(
|
| 113 |
-
dims, self.channels, self.out_channels, 3, padding=padding
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
def forward(self, x):
|
| 117 |
-
assert x.shape[1] == self.channels
|
| 118 |
-
if self.dims == 3:
|
| 119 |
-
x = F.interpolate(
|
| 120 |
-
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 121 |
-
)
|
| 122 |
-
else:
|
| 123 |
-
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 124 |
-
if self.use_conv:
|
| 125 |
-
x = self.conv(x)
|
| 126 |
-
return x
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
class TransposedUpsample(nn.Module):
|
| 130 |
-
"Learned 2x upsampling without padding"
|
| 131 |
-
|
| 132 |
-
def __init__(self, channels, out_channels=None, ks=5):
|
| 133 |
-
super().__init__()
|
| 134 |
-
self.channels = channels
|
| 135 |
-
self.out_channels = out_channels or channels
|
| 136 |
-
|
| 137 |
-
self.up = nn.ConvTranspose2d(
|
| 138 |
-
self.channels, self.out_channels, kernel_size=ks, stride=2
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
def forward(self, x):
|
| 142 |
-
return self.up(x)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
class Downsample(nn.Module):
|
| 146 |
-
"""
|
| 147 |
-
A downsampling layer with an optional convolution.
|
| 148 |
-
:param channels: channels in the inputs and outputs.
|
| 149 |
-
:param use_conv: a bool determining if a convolution is applied.
|
| 150 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 151 |
-
downsampling occurs in the inner-two dimensions.
|
| 152 |
-
"""
|
| 153 |
-
|
| 154 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 155 |
-
super().__init__()
|
| 156 |
-
self.channels = channels
|
| 157 |
-
self.out_channels = out_channels or channels
|
| 158 |
-
self.use_conv = use_conv
|
| 159 |
-
self.dims = dims
|
| 160 |
-
stride = 2 if dims != 3 else (1, 2, 2)
|
| 161 |
-
if use_conv:
|
| 162 |
-
self.op = conv_nd(
|
| 163 |
-
dims,
|
| 164 |
-
self.channels,
|
| 165 |
-
self.out_channels,
|
| 166 |
-
3,
|
| 167 |
-
stride=stride,
|
| 168 |
-
padding=padding,
|
| 169 |
-
)
|
| 170 |
-
else:
|
| 171 |
-
assert self.channels == self.out_channels
|
| 172 |
-
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 173 |
-
|
| 174 |
-
def forward(self, x):
|
| 175 |
-
assert x.shape[1] == self.channels
|
| 176 |
-
return self.op(x)
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
class ResBlock(TimestepBlock):
|
| 180 |
-
"""
|
| 181 |
-
A residual block that can optionally change the number of channels.
|
| 182 |
-
:param channels: the number of input channels.
|
| 183 |
-
:param emb_channels: the number of timestep embedding channels.
|
| 184 |
-
:param dropout: the rate of dropout.
|
| 185 |
-
:param out_channels: if specified, the number of out channels.
|
| 186 |
-
:param use_conv: if True and out_channels is specified, use a spatial
|
| 187 |
-
convolution instead of a smaller 1x1 convolution to change the
|
| 188 |
-
channels in the skip connection.
|
| 189 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 190 |
-
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 191 |
-
:param up: if True, use this block for upsampling.
|
| 192 |
-
:param down: if True, use this block for downsampling.
|
| 193 |
-
"""
|
| 194 |
-
|
| 195 |
-
def __init__(
|
| 196 |
-
self,
|
| 197 |
-
channels,
|
| 198 |
-
emb_channels,
|
| 199 |
-
dropout,
|
| 200 |
-
out_channels=None,
|
| 201 |
-
use_conv=False,
|
| 202 |
-
use_scale_shift_norm=False,
|
| 203 |
-
dims=2,
|
| 204 |
-
use_checkpoint=False,
|
| 205 |
-
up=False,
|
| 206 |
-
down=False,
|
| 207 |
-
):
|
| 208 |
-
super().__init__()
|
| 209 |
-
self.channels = channels
|
| 210 |
-
self.emb_channels = emb_channels
|
| 211 |
-
self.dropout = dropout
|
| 212 |
-
self.out_channels = out_channels or channels
|
| 213 |
-
self.use_conv = use_conv
|
| 214 |
-
self.use_checkpoint = use_checkpoint
|
| 215 |
-
self.use_scale_shift_norm = use_scale_shift_norm
|
| 216 |
-
|
| 217 |
-
self.in_layers = nn.Sequential(
|
| 218 |
-
normalization(channels),
|
| 219 |
-
nn.SiLU(),
|
| 220 |
-
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
self.updown = up or down
|
| 224 |
-
|
| 225 |
-
if up:
|
| 226 |
-
self.h_upd = Upsample(channels, False, dims)
|
| 227 |
-
self.x_upd = Upsample(channels, False, dims)
|
| 228 |
-
elif down:
|
| 229 |
-
self.h_upd = Downsample(channels, False, dims)
|
| 230 |
-
self.x_upd = Downsample(channels, False, dims)
|
| 231 |
-
else:
|
| 232 |
-
self.h_upd = self.x_upd = nn.Identity()
|
| 233 |
-
|
| 234 |
-
self.emb_layers = nn.Sequential(
|
| 235 |
-
nn.SiLU(),
|
| 236 |
-
linear(
|
| 237 |
-
emb_channels,
|
| 238 |
-
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 239 |
-
),
|
| 240 |
-
)
|
| 241 |
-
self.out_layers = nn.Sequential(
|
| 242 |
-
normalization(self.out_channels),
|
| 243 |
-
nn.SiLU(),
|
| 244 |
-
nn.Dropout(p=dropout),
|
| 245 |
-
zero_module(
|
| 246 |
-
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 247 |
-
),
|
| 248 |
-
)
|
| 249 |
-
|
| 250 |
-
if self.out_channels == channels:
|
| 251 |
-
self.skip_connection = nn.Identity()
|
| 252 |
-
elif use_conv:
|
| 253 |
-
self.skip_connection = conv_nd(
|
| 254 |
-
dims, channels, self.out_channels, 3, padding=1
|
| 255 |
-
)
|
| 256 |
-
else:
|
| 257 |
-
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 258 |
-
|
| 259 |
-
def forward(self, x, emb):
|
| 260 |
-
"""
|
| 261 |
-
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 262 |
-
:param x: an [N x C x ...] Tensor of features.
|
| 263 |
-
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 264 |
-
:return: an [N x C x ...] Tensor of outputs.
|
| 265 |
-
"""
|
| 266 |
-
return checkpoint(
|
| 267 |
-
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
def _forward(self, x, emb):
|
| 271 |
-
if self.updown:
|
| 272 |
-
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 273 |
-
h = in_rest(x)
|
| 274 |
-
h = self.h_upd(h)
|
| 275 |
-
x = self.x_upd(x)
|
| 276 |
-
h = in_conv(h)
|
| 277 |
-
else:
|
| 278 |
-
h = self.in_layers(x)
|
| 279 |
-
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 280 |
-
while len(emb_out.shape) < len(h.shape):
|
| 281 |
-
emb_out = emb_out[..., None]
|
| 282 |
-
if self.use_scale_shift_norm:
|
| 283 |
-
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 284 |
-
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 285 |
-
h = out_norm(h) * (1 + scale) + shift
|
| 286 |
-
h = out_rest(h)
|
| 287 |
-
else:
|
| 288 |
-
h = h + emb_out
|
| 289 |
-
h = self.out_layers(h)
|
| 290 |
-
return self.skip_connection(x) + h
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
class AttentionBlock(nn.Module):
|
| 294 |
-
"""
|
| 295 |
-
An attention block that allows spatial positions to attend to each other.
|
| 296 |
-
Originally ported from here, but adapted to the N-d case.
|
| 297 |
-
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 298 |
-
"""
|
| 299 |
-
|
| 300 |
-
def __init__(
|
| 301 |
-
self,
|
| 302 |
-
channels,
|
| 303 |
-
num_heads=1,
|
| 304 |
-
num_head_channels=-1,
|
| 305 |
-
use_checkpoint=False,
|
| 306 |
-
use_new_attention_order=False,
|
| 307 |
-
):
|
| 308 |
-
super().__init__()
|
| 309 |
-
self.channels = channels
|
| 310 |
-
if num_head_channels == -1:
|
| 311 |
-
self.num_heads = num_heads
|
| 312 |
-
else:
|
| 313 |
-
assert (
|
| 314 |
-
channels % num_head_channels == 0
|
| 315 |
-
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 316 |
-
self.num_heads = channels // num_head_channels
|
| 317 |
-
self.use_checkpoint = use_checkpoint
|
| 318 |
-
self.norm = normalization(channels)
|
| 319 |
-
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 320 |
-
if use_new_attention_order:
|
| 321 |
-
# split qkv before split heads
|
| 322 |
-
self.attention = QKVAttention(self.num_heads)
|
| 323 |
-
else:
|
| 324 |
-
# split heads before split qkv
|
| 325 |
-
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 326 |
-
|
| 327 |
-
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 328 |
-
|
| 329 |
-
def forward(self, x):
|
| 330 |
-
return checkpoint(
|
| 331 |
-
self._forward, (x,), self.parameters(), True
|
| 332 |
-
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 333 |
-
# return pt_checkpoint(self._forward, x) # pytorch
|
| 334 |
-
|
| 335 |
-
def _forward(self, x):
|
| 336 |
-
b, c, *spatial = x.shape
|
| 337 |
-
x = x.reshape(b, c, -1)
|
| 338 |
-
qkv = self.qkv(self.norm(x))
|
| 339 |
-
h = self.attention(qkv)
|
| 340 |
-
h = self.proj_out(h)
|
| 341 |
-
return (x + h).reshape(b, c, *spatial)
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
def count_flops_attn(model, _x, y):
|
| 345 |
-
"""
|
| 346 |
-
A counter for the `thop` package to count the operations in an
|
| 347 |
-
attention operation.
|
| 348 |
-
Meant to be used like:
|
| 349 |
-
macs, params = thop.profile(
|
| 350 |
-
model,
|
| 351 |
-
inputs=(inputs, timestamps),
|
| 352 |
-
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 353 |
-
)
|
| 354 |
-
"""
|
| 355 |
-
b, c, *spatial = y[0].shape
|
| 356 |
-
num_spatial = int(np.prod(spatial))
|
| 357 |
-
# We perform two matmuls with the same number of ops.
|
| 358 |
-
# The first computes the weight matrix, the second computes
|
| 359 |
-
# the combination of the value vectors.
|
| 360 |
-
matmul_ops = 2 * b * (num_spatial**2) * c
|
| 361 |
-
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
class QKVAttentionLegacy(nn.Module):
|
| 365 |
-
"""
|
| 366 |
-
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 367 |
-
"""
|
| 368 |
-
|
| 369 |
-
def __init__(self, n_heads):
|
| 370 |
-
super().__init__()
|
| 371 |
-
self.n_heads = n_heads
|
| 372 |
-
|
| 373 |
-
def forward(self, qkv):
|
| 374 |
-
"""
|
| 375 |
-
Apply QKV attention.
|
| 376 |
-
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 377 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
| 378 |
-
"""
|
| 379 |
-
bs, width, length = qkv.shape
|
| 380 |
-
assert width % (3 * self.n_heads) == 0
|
| 381 |
-
ch = width // (3 * self.n_heads)
|
| 382 |
-
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 383 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 384 |
-
weight = th.einsum(
|
| 385 |
-
"bct,bcs->bts", q * scale, k * scale
|
| 386 |
-
) # More stable with f16 than dividing afterwards
|
| 387 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 388 |
-
a = th.einsum("bts,bcs->bct", weight, v)
|
| 389 |
-
return a.reshape(bs, -1, length)
|
| 390 |
-
|
| 391 |
-
@staticmethod
|
| 392 |
-
def count_flops(model, _x, y):
|
| 393 |
-
return count_flops_attn(model, _x, y)
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
class QKVAttention(nn.Module):
|
| 397 |
-
"""
|
| 398 |
-
A module which performs QKV attention and splits in a different order.
|
| 399 |
-
"""
|
| 400 |
-
|
| 401 |
-
def __init__(self, n_heads):
|
| 402 |
-
super().__init__()
|
| 403 |
-
self.n_heads = n_heads
|
| 404 |
-
|
| 405 |
-
def forward(self, qkv):
|
| 406 |
-
"""
|
| 407 |
-
Apply QKV attention.
|
| 408 |
-
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 409 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
| 410 |
-
"""
|
| 411 |
-
bs, width, length = qkv.shape
|
| 412 |
-
assert width % (3 * self.n_heads) == 0
|
| 413 |
-
ch = width // (3 * self.n_heads)
|
| 414 |
-
q, k, v = qkv.chunk(3, dim=1)
|
| 415 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 416 |
-
weight = th.einsum(
|
| 417 |
-
"bct,bcs->bts",
|
| 418 |
-
(q * scale).view(bs * self.n_heads, ch, length),
|
| 419 |
-
(k * scale).view(bs * self.n_heads, ch, length),
|
| 420 |
-
) # More stable with f16 than dividing afterwards
|
| 421 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 422 |
-
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
| 423 |
-
return a.reshape(bs, -1, length)
|
| 424 |
-
|
| 425 |
-
@staticmethod
|
| 426 |
-
def count_flops(model, _x, y):
|
| 427 |
-
return count_flops_attn(model, _x, y)
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
class Timestep(nn.Module):
|
| 431 |
-
def __init__(self, dim):
|
| 432 |
-
super().__init__()
|
| 433 |
-
self.dim = dim
|
| 434 |
-
|
| 435 |
-
def forward(self, t):
|
| 436 |
-
return timestep_embedding(t, self.dim)
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
class MultiViewUNetModel(nn.Module):
|
| 440 |
-
"""
|
| 441 |
-
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
| 442 |
-
:param in_channels: channels in the input Tensor.
|
| 443 |
-
:param model_channels: base channel count for the model.
|
| 444 |
-
:param out_channels: channels in the output Tensor.
|
| 445 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
| 446 |
-
:param attention_resolutions: a collection of downsample rates at which
|
| 447 |
-
attention will take place. May be a set, list, or tuple.
|
| 448 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
| 449 |
-
will be used.
|
| 450 |
-
:param dropout: the dropout probability.
|
| 451 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
| 452 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 453 |
-
downsampling.
|
| 454 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 455 |
-
:param num_classes: if specified (as an int), then this model will be
|
| 456 |
-
class-conditional with `num_classes` classes.
|
| 457 |
-
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 458 |
-
:param num_heads: the number of attention heads in each attention layer.
|
| 459 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 460 |
-
a fixed channel width per attention head.
|
| 461 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
| 462 |
-
of heads for upsampling. Deprecated.
|
| 463 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 464 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
| 465 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
| 466 |
-
increased efficiency.
|
| 467 |
-
:param camera_dim: dimensionality of camera input.
|
| 468 |
-
"""
|
| 469 |
-
|
| 470 |
-
def __init__(
|
| 471 |
-
self,
|
| 472 |
-
image_size,
|
| 473 |
-
in_channels,
|
| 474 |
-
model_channels,
|
| 475 |
-
out_channels,
|
| 476 |
-
num_res_blocks,
|
| 477 |
-
attention_resolutions,
|
| 478 |
-
dropout=0,
|
| 479 |
-
channel_mult=(1, 2, 4, 8),
|
| 480 |
-
conv_resample=True,
|
| 481 |
-
dims=2,
|
| 482 |
-
num_classes=None,
|
| 483 |
-
use_checkpoint=False,
|
| 484 |
-
use_fp16=False,
|
| 485 |
-
use_bf16=False,
|
| 486 |
-
num_heads=-1,
|
| 487 |
-
num_head_channels=-1,
|
| 488 |
-
num_heads_upsample=-1,
|
| 489 |
-
use_scale_shift_norm=False,
|
| 490 |
-
resblock_updown=False,
|
| 491 |
-
use_new_attention_order=False,
|
| 492 |
-
use_spatial_transformer=False, # custom transformer support
|
| 493 |
-
transformer_depth=1, # custom transformer support
|
| 494 |
-
context_dim=None, # custom transformer support
|
| 495 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 496 |
-
legacy=True,
|
| 497 |
-
disable_self_attentions=None,
|
| 498 |
-
num_attention_blocks=None,
|
| 499 |
-
disable_middle_self_attn=False,
|
| 500 |
-
use_linear_in_transformer=False,
|
| 501 |
-
adm_in_channels=None,
|
| 502 |
-
camera_dim=None,
|
| 503 |
-
with_ip=False, # wether add image prompt images
|
| 504 |
-
ip_dim=0, # number of extra token, 4 for global 16 for local
|
| 505 |
-
ip_weight=1.0, # weight for image prompt context
|
| 506 |
-
ip_mode="local_resample", # which mode of adaptor, global or local
|
| 507 |
-
):
|
| 508 |
-
super().__init__()
|
| 509 |
-
if use_spatial_transformer:
|
| 510 |
-
assert (
|
| 511 |
-
context_dim is not None
|
| 512 |
-
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 513 |
-
|
| 514 |
-
if context_dim is not None:
|
| 515 |
-
assert (
|
| 516 |
-
use_spatial_transformer
|
| 517 |
-
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 518 |
-
from omegaconf.listconfig import ListConfig
|
| 519 |
-
|
| 520 |
-
if type(context_dim) == ListConfig:
|
| 521 |
-
context_dim = list(context_dim)
|
| 522 |
-
|
| 523 |
-
if num_heads_upsample == -1:
|
| 524 |
-
num_heads_upsample = num_heads
|
| 525 |
-
|
| 526 |
-
if num_heads == -1:
|
| 527 |
-
assert (
|
| 528 |
-
num_head_channels != -1
|
| 529 |
-
), "Either num_heads or num_head_channels has to be set"
|
| 530 |
-
|
| 531 |
-
if num_head_channels == -1:
|
| 532 |
-
assert (
|
| 533 |
-
num_heads != -1
|
| 534 |
-
), "Either num_heads or num_head_channels has to be set"
|
| 535 |
-
|
| 536 |
-
self.image_size = image_size
|
| 537 |
-
self.in_channels = in_channels
|
| 538 |
-
self.model_channels = model_channels
|
| 539 |
-
self.out_channels = out_channels
|
| 540 |
-
if isinstance(num_res_blocks, int):
|
| 541 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 542 |
-
else:
|
| 543 |
-
if len(num_res_blocks) != len(channel_mult):
|
| 544 |
-
raise ValueError(
|
| 545 |
-
"provide num_res_blocks either as an int (globally constant) or "
|
| 546 |
-
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 547 |
-
)
|
| 548 |
-
self.num_res_blocks = num_res_blocks
|
| 549 |
-
if disable_self_attentions is not None:
|
| 550 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 551 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
| 552 |
-
if num_attention_blocks is not None:
|
| 553 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 554 |
-
assert all(
|
| 555 |
-
map(
|
| 556 |
-
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 557 |
-
range(len(num_attention_blocks)),
|
| 558 |
-
)
|
| 559 |
-
)
|
| 560 |
-
print(
|
| 561 |
-
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 562 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 563 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 564 |
-
f"attention will still not be set."
|
| 565 |
-
)
|
| 566 |
-
|
| 567 |
-
self.attention_resolutions = attention_resolutions
|
| 568 |
-
self.dropout = dropout
|
| 569 |
-
self.channel_mult = channel_mult
|
| 570 |
-
self.conv_resample = conv_resample
|
| 571 |
-
self.num_classes = num_classes
|
| 572 |
-
self.use_checkpoint = use_checkpoint
|
| 573 |
-
self.dtype = th.float16 if use_fp16 else th.float32
|
| 574 |
-
self.dtype = th.bfloat16 if use_bf16 else self.dtype
|
| 575 |
-
self.num_heads = num_heads
|
| 576 |
-
self.num_head_channels = num_head_channels
|
| 577 |
-
self.num_heads_upsample = num_heads_upsample
|
| 578 |
-
self.predict_codebook_ids = n_embed is not None
|
| 579 |
-
|
| 580 |
-
self.with_ip = with_ip # wether there is image prompt
|
| 581 |
-
self.ip_dim = ip_dim # num of extra token, 4 for global 16 for local
|
| 582 |
-
self.ip_weight = ip_weight
|
| 583 |
-
assert ip_mode in ["global", "local_resample"]
|
| 584 |
-
self.ip_mode = ip_mode # which mode of adaptor
|
| 585 |
-
|
| 586 |
-
time_embed_dim = model_channels * 4
|
| 587 |
-
self.time_embed = nn.Sequential(
|
| 588 |
-
linear(model_channels, time_embed_dim),
|
| 589 |
-
nn.SiLU(),
|
| 590 |
-
linear(time_embed_dim, time_embed_dim),
|
| 591 |
-
)
|
| 592 |
-
|
| 593 |
-
if camera_dim is not None:
|
| 594 |
-
time_embed_dim = model_channels * 4
|
| 595 |
-
self.camera_embed = nn.Sequential(
|
| 596 |
-
linear(camera_dim, time_embed_dim),
|
| 597 |
-
nn.SiLU(),
|
| 598 |
-
linear(time_embed_dim, time_embed_dim),
|
| 599 |
-
)
|
| 600 |
-
|
| 601 |
-
if self.num_classes is not None:
|
| 602 |
-
if isinstance(self.num_classes, int):
|
| 603 |
-
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 604 |
-
elif self.num_classes == "continuous":
|
| 605 |
-
print("setting up linear c_adm embedding layer")
|
| 606 |
-
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 607 |
-
elif self.num_classes == "sequential":
|
| 608 |
-
assert adm_in_channels is not None
|
| 609 |
-
self.label_emb = nn.Sequential(
|
| 610 |
-
nn.Sequential(
|
| 611 |
-
linear(adm_in_channels, time_embed_dim),
|
| 612 |
-
nn.SiLU(),
|
| 613 |
-
linear(time_embed_dim, time_embed_dim),
|
| 614 |
-
)
|
| 615 |
-
)
|
| 616 |
-
else:
|
| 617 |
-
raise ValueError()
|
| 618 |
-
|
| 619 |
-
if self.with_ip and (context_dim is not None) and ip_dim > 0:
|
| 620 |
-
if self.ip_mode == "local_resample":
|
| 621 |
-
# ip-adapter-plus
|
| 622 |
-
hidden_dim = 1280
|
| 623 |
-
self.image_embed = Resampler(
|
| 624 |
-
dim=context_dim,
|
| 625 |
-
depth=4,
|
| 626 |
-
dim_head=64,
|
| 627 |
-
heads=12,
|
| 628 |
-
num_queries=ip_dim, # num token
|
| 629 |
-
embedding_dim=hidden_dim,
|
| 630 |
-
output_dim=context_dim,
|
| 631 |
-
ff_mult=4,
|
| 632 |
-
)
|
| 633 |
-
elif self.ip_mode == "global":
|
| 634 |
-
self.image_embed = ImageProjModel(
|
| 635 |
-
cross_attention_dim=context_dim,
|
| 636 |
-
clip_extra_context_tokens=ip_dim)
|
| 637 |
-
else:
|
| 638 |
-
raise ValueError(f"{self.ip_mode} is not supported")
|
| 639 |
-
|
| 640 |
-
self.input_blocks = nn.ModuleList(
|
| 641 |
-
[
|
| 642 |
-
TimestepEmbedSequential(
|
| 643 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 644 |
-
)
|
| 645 |
-
]
|
| 646 |
-
)
|
| 647 |
-
self._feature_size = model_channels
|
| 648 |
-
input_block_chans = [model_channels]
|
| 649 |
-
ch = model_channels
|
| 650 |
-
ds = 1
|
| 651 |
-
for level, mult in enumerate(channel_mult):
|
| 652 |
-
for nr in range(self.num_res_blocks[level]):
|
| 653 |
-
layers = [
|
| 654 |
-
ResBlock(
|
| 655 |
-
ch,
|
| 656 |
-
time_embed_dim,
|
| 657 |
-
dropout,
|
| 658 |
-
out_channels=mult * model_channels,
|
| 659 |
-
dims=dims,
|
| 660 |
-
use_checkpoint=use_checkpoint,
|
| 661 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 662 |
-
)
|
| 663 |
-
]
|
| 664 |
-
ch = mult * model_channels
|
| 665 |
-
if ds in attention_resolutions:
|
| 666 |
-
if num_head_channels == -1:
|
| 667 |
-
dim_head = ch // num_heads
|
| 668 |
-
else:
|
| 669 |
-
num_heads = ch // num_head_channels
|
| 670 |
-
dim_head = num_head_channels
|
| 671 |
-
if legacy:
|
| 672 |
-
# num_heads = 1
|
| 673 |
-
dim_head = (
|
| 674 |
-
ch // num_heads
|
| 675 |
-
if use_spatial_transformer
|
| 676 |
-
else num_head_channels
|
| 677 |
-
)
|
| 678 |
-
if exists(disable_self_attentions):
|
| 679 |
-
disabled_sa = disable_self_attentions[level]
|
| 680 |
-
else:
|
| 681 |
-
disabled_sa = False
|
| 682 |
-
|
| 683 |
-
if (
|
| 684 |
-
not exists(num_attention_blocks)
|
| 685 |
-
or nr < num_attention_blocks[level]
|
| 686 |
-
):
|
| 687 |
-
layers.append(
|
| 688 |
-
AttentionBlock(
|
| 689 |
-
ch,
|
| 690 |
-
use_checkpoint=use_checkpoint,
|
| 691 |
-
num_heads=num_heads,
|
| 692 |
-
num_head_channels=dim_head,
|
| 693 |
-
use_new_attention_order=use_new_attention_order,
|
| 694 |
-
)
|
| 695 |
-
if not use_spatial_transformer
|
| 696 |
-
else SpatialTransformer3D(
|
| 697 |
-
ch,
|
| 698 |
-
num_heads,
|
| 699 |
-
dim_head,
|
| 700 |
-
depth=transformer_depth,
|
| 701 |
-
context_dim=context_dim,
|
| 702 |
-
disable_self_attn=disabled_sa,
|
| 703 |
-
use_linear=use_linear_in_transformer,
|
| 704 |
-
use_checkpoint=use_checkpoint,
|
| 705 |
-
with_ip=self.with_ip,
|
| 706 |
-
ip_dim=self.ip_dim,
|
| 707 |
-
ip_weight=self.ip_weight
|
| 708 |
-
)
|
| 709 |
-
)
|
| 710 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 711 |
-
self._feature_size += ch
|
| 712 |
-
input_block_chans.append(ch)
|
| 713 |
-
|
| 714 |
-
if level != len(channel_mult) - 1:
|
| 715 |
-
out_ch = ch
|
| 716 |
-
self.input_blocks.append(
|
| 717 |
-
TimestepEmbedSequential(
|
| 718 |
-
ResBlock(
|
| 719 |
-
ch,
|
| 720 |
-
time_embed_dim,
|
| 721 |
-
dropout,
|
| 722 |
-
out_channels=out_ch,
|
| 723 |
-
dims=dims,
|
| 724 |
-
use_checkpoint=use_checkpoint,
|
| 725 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 726 |
-
down=True,
|
| 727 |
-
)
|
| 728 |
-
if resblock_updown
|
| 729 |
-
else Downsample(
|
| 730 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 731 |
-
)
|
| 732 |
-
)
|
| 733 |
-
)
|
| 734 |
-
ch = out_ch
|
| 735 |
-
input_block_chans.append(ch)
|
| 736 |
-
ds *= 2
|
| 737 |
-
self._feature_size += ch
|
| 738 |
-
|
| 739 |
-
if num_head_channels == -1:
|
| 740 |
-
dim_head = ch // num_heads
|
| 741 |
-
else:
|
| 742 |
-
num_heads = ch // num_head_channels
|
| 743 |
-
dim_head = num_head_channels
|
| 744 |
-
if legacy:
|
| 745 |
-
# num_heads = 1
|
| 746 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 747 |
-
self.middle_block = TimestepEmbedSequential(
|
| 748 |
-
ResBlock(
|
| 749 |
-
ch,
|
| 750 |
-
time_embed_dim,
|
| 751 |
-
dropout,
|
| 752 |
-
dims=dims,
|
| 753 |
-
use_checkpoint=use_checkpoint,
|
| 754 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 755 |
-
),
|
| 756 |
-
AttentionBlock(
|
| 757 |
-
ch,
|
| 758 |
-
use_checkpoint=use_checkpoint,
|
| 759 |
-
num_heads=num_heads,
|
| 760 |
-
num_head_channels=dim_head,
|
| 761 |
-
use_new_attention_order=use_new_attention_order,
|
| 762 |
-
)
|
| 763 |
-
if not use_spatial_transformer
|
| 764 |
-
else SpatialTransformer3D( # always uses a self-attn
|
| 765 |
-
ch,
|
| 766 |
-
num_heads,
|
| 767 |
-
dim_head,
|
| 768 |
-
depth=transformer_depth,
|
| 769 |
-
context_dim=context_dim,
|
| 770 |
-
disable_self_attn=disable_middle_self_attn,
|
| 771 |
-
use_linear=use_linear_in_transformer,
|
| 772 |
-
use_checkpoint=use_checkpoint,
|
| 773 |
-
with_ip=self.with_ip,
|
| 774 |
-
ip_dim=self.ip_dim,
|
| 775 |
-
ip_weight=self.ip_weight
|
| 776 |
-
),
|
| 777 |
-
ResBlock(
|
| 778 |
-
ch,
|
| 779 |
-
time_embed_dim,
|
| 780 |
-
dropout,
|
| 781 |
-
dims=dims,
|
| 782 |
-
use_checkpoint=use_checkpoint,
|
| 783 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 784 |
-
),
|
| 785 |
-
)
|
| 786 |
-
self._feature_size += ch
|
| 787 |
-
|
| 788 |
-
self.output_blocks = nn.ModuleList([])
|
| 789 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 790 |
-
for i in range(self.num_res_blocks[level] + 1):
|
| 791 |
-
ich = input_block_chans.pop()
|
| 792 |
-
layers = [
|
| 793 |
-
ResBlock(
|
| 794 |
-
ch + ich,
|
| 795 |
-
time_embed_dim,
|
| 796 |
-
dropout,
|
| 797 |
-
out_channels=model_channels * mult,
|
| 798 |
-
dims=dims,
|
| 799 |
-
use_checkpoint=use_checkpoint,
|
| 800 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 801 |
-
)
|
| 802 |
-
]
|
| 803 |
-
ch = model_channels * mult
|
| 804 |
-
if ds in attention_resolutions:
|
| 805 |
-
if num_head_channels == -1:
|
| 806 |
-
dim_head = ch // num_heads
|
| 807 |
-
else:
|
| 808 |
-
num_heads = ch // num_head_channels
|
| 809 |
-
dim_head = num_head_channels
|
| 810 |
-
if legacy:
|
| 811 |
-
# num_heads = 1
|
| 812 |
-
dim_head = (
|
| 813 |
-
ch // num_heads
|
| 814 |
-
if use_spatial_transformer
|
| 815 |
-
else num_head_channels
|
| 816 |
-
)
|
| 817 |
-
if exists(disable_self_attentions):
|
| 818 |
-
disabled_sa = disable_self_attentions[level]
|
| 819 |
-
else:
|
| 820 |
-
disabled_sa = False
|
| 821 |
-
|
| 822 |
-
if (
|
| 823 |
-
not exists(num_attention_blocks)
|
| 824 |
-
or i < num_attention_blocks[level]
|
| 825 |
-
):
|
| 826 |
-
layers.append(
|
| 827 |
-
AttentionBlock(
|
| 828 |
-
ch,
|
| 829 |
-
use_checkpoint=use_checkpoint,
|
| 830 |
-
num_heads=num_heads_upsample,
|
| 831 |
-
num_head_channels=dim_head,
|
| 832 |
-
use_new_attention_order=use_new_attention_order,
|
| 833 |
-
)
|
| 834 |
-
if not use_spatial_transformer
|
| 835 |
-
else SpatialTransformer3D(
|
| 836 |
-
ch,
|
| 837 |
-
num_heads,
|
| 838 |
-
dim_head,
|
| 839 |
-
depth=transformer_depth,
|
| 840 |
-
context_dim=context_dim,
|
| 841 |
-
disable_self_attn=disabled_sa,
|
| 842 |
-
use_linear=use_linear_in_transformer,
|
| 843 |
-
use_checkpoint=use_checkpoint,
|
| 844 |
-
with_ip=self.with_ip,
|
| 845 |
-
ip_dim=self.ip_dim,
|
| 846 |
-
ip_weight=self.ip_weight
|
| 847 |
-
)
|
| 848 |
-
)
|
| 849 |
-
if level and i == self.num_res_blocks[level]:
|
| 850 |
-
out_ch = ch
|
| 851 |
-
layers.append(
|
| 852 |
-
ResBlock(
|
| 853 |
-
ch,
|
| 854 |
-
time_embed_dim,
|
| 855 |
-
dropout,
|
| 856 |
-
out_channels=out_ch,
|
| 857 |
-
dims=dims,
|
| 858 |
-
use_checkpoint=use_checkpoint,
|
| 859 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
| 860 |
-
up=True,
|
| 861 |
-
)
|
| 862 |
-
if resblock_updown
|
| 863 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 864 |
-
)
|
| 865 |
-
ds //= 2
|
| 866 |
-
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 867 |
-
self._feature_size += ch
|
| 868 |
-
|
| 869 |
-
self.out = nn.Sequential(
|
| 870 |
-
normalization(ch),
|
| 871 |
-
nn.SiLU(),
|
| 872 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 873 |
-
)
|
| 874 |
-
if self.predict_codebook_ids:
|
| 875 |
-
self.id_predictor = nn.Sequential(
|
| 876 |
-
normalization(ch),
|
| 877 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
| 878 |
-
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 879 |
-
)
|
| 880 |
-
|
| 881 |
-
def convert_to_fp16(self):
|
| 882 |
-
"""
|
| 883 |
-
Convert the torso of the model to float16.
|
| 884 |
-
"""
|
| 885 |
-
self.input_blocks.apply(convert_module_to_f16)
|
| 886 |
-
self.middle_block.apply(convert_module_to_f16)
|
| 887 |
-
self.output_blocks.apply(convert_module_to_f16)
|
| 888 |
-
|
| 889 |
-
def convert_to_fp32(self):
|
| 890 |
-
"""
|
| 891 |
-
Convert the torso of the model to float32.
|
| 892 |
-
"""
|
| 893 |
-
self.input_blocks.apply(convert_module_to_f32)
|
| 894 |
-
self.middle_block.apply(convert_module_to_f32)
|
| 895 |
-
self.output_blocks.apply(convert_module_to_f32)
|
| 896 |
-
|
| 897 |
-
def forward(
|
| 898 |
-
self,
|
| 899 |
-
x,
|
| 900 |
-
timesteps=None,
|
| 901 |
-
context=None,
|
| 902 |
-
y=None,
|
| 903 |
-
camera=None,
|
| 904 |
-
num_frames=1,
|
| 905 |
-
**kwargs,
|
| 906 |
-
):
|
| 907 |
-
"""
|
| 908 |
-
Apply the model to an input batch.
|
| 909 |
-
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
| 910 |
-
:param timesteps: a 1-D batch of timesteps.
|
| 911 |
-
:param context: a dict conditioning plugged in via crossattn
|
| 912 |
-
:param y: an [N] Tensor of labels, if class-conditional, default None.
|
| 913 |
-
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
| 914 |
-
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
| 915 |
-
"""
|
| 916 |
-
assert (
|
| 917 |
-
x.shape[0] % num_frames == 0
|
| 918 |
-
), "[UNet] input batch size must be dividable by num_frames!"
|
| 919 |
-
assert (y is not None) == (
|
| 920 |
-
self.num_classes is not None
|
| 921 |
-
), "must specify y if and only if the model is class-conditional"
|
| 922 |
-
|
| 923 |
-
hs = []
|
| 924 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # shape: torch.Size([B, 320]) mean: 0.18, std: 0.68, min: -1.00, max: 1.00
|
| 925 |
-
emb = self.time_embed(t_emb) # shape: torch.Size([B, 1280]) mean: 0.12, std: 0.57, min: -5.73, max: 6.51
|
| 926 |
-
|
| 927 |
-
if self.num_classes is not None:
|
| 928 |
-
assert y.shape[0] == x.shape[0]
|
| 929 |
-
emb = emb + self.label_emb(y)
|
| 930 |
-
|
| 931 |
-
# Add camera embeddings
|
| 932 |
-
if camera is not None:
|
| 933 |
-
assert camera.shape[0] == emb.shape[0]
|
| 934 |
-
# camera embed: shape: torch.Size([B, 1280]) mean: -0.02, std: 0.27, min: -7.23, max: 2.04
|
| 935 |
-
emb = emb + self.camera_embed(camera)
|
| 936 |
-
ip = kwargs.get("ip", None)
|
| 937 |
-
ip_img = kwargs.get("ip_img", None)
|
| 938 |
-
|
| 939 |
-
if ip_img is not None:
|
| 940 |
-
x[(num_frames-1)::num_frames, :, :, :] = ip_img
|
| 941 |
-
|
| 942 |
-
if ip is not None:
|
| 943 |
-
ip_emb = self.image_embed(ip) # shape: torch.Size([B, 16, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 944 |
-
context = torch.cat((context, ip_emb), 1) # shape: torch.Size([B, 93, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 945 |
-
|
| 946 |
-
h = x.type(self.dtype)
|
| 947 |
-
for module in self.input_blocks:
|
| 948 |
-
h = module(h, emb, context, num_frames=num_frames)
|
| 949 |
-
hs.append(h)
|
| 950 |
-
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
| 951 |
-
for module in self.output_blocks:
|
| 952 |
-
h = th.cat([h, hs.pop()], dim=1)
|
| 953 |
-
h = module(h, emb, context, num_frames=num_frames)
|
| 954 |
-
h = h.type(x.dtype) # shape: torch.Size([10, 320, 32, 32]) mean: -0.67, std: 3.96, min: -42.74, max: 25.58
|
| 955 |
-
if self.predict_codebook_ids: # False
|
| 956 |
-
return self.id_predictor(h)
|
| 957 |
-
else:
|
| 958 |
-
return self.out(h) # shape: torch.Size([10, 4, 32, 32]) mean: -0.00, std: 0.91, min: -3.65, max: 3.93
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
class MultiViewUNetModelStage2(MultiViewUNetModel):
|
| 964 |
-
"""
|
| 965 |
-
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
| 966 |
-
:param in_channels: channels in the input Tensor.
|
| 967 |
-
:param model_channels: base channel count for the model.
|
| 968 |
-
:param out_channels: channels in the output Tensor.
|
| 969 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
| 970 |
-
:param attention_resolutions: a collection of downsample rates at which
|
| 971 |
-
attention will take place. May be a set, list, or tuple.
|
| 972 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
| 973 |
-
will be used.
|
| 974 |
-
:param dropout: the dropout probability.
|
| 975 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
| 976 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 977 |
-
downsampling.
|
| 978 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 979 |
-
:param num_classes: if specified (as an int), then this model will be
|
| 980 |
-
class-conditional with `num_classes` classes.
|
| 981 |
-
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 982 |
-
:param num_heads: the number of attention heads in each attention layer.
|
| 983 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 984 |
-
a fixed channel width per attention head.
|
| 985 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
| 986 |
-
of heads for upsampling. Deprecated.
|
| 987 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 988 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
| 989 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
| 990 |
-
increased efficiency.
|
| 991 |
-
:param camera_dim: dimensionality of camera input.
|
| 992 |
-
"""
|
| 993 |
-
|
| 994 |
-
def __init__(
|
| 995 |
-
self,
|
| 996 |
-
image_size,
|
| 997 |
-
in_channels,
|
| 998 |
-
model_channels,
|
| 999 |
-
out_channels,
|
| 1000 |
-
num_res_blocks,
|
| 1001 |
-
attention_resolutions,
|
| 1002 |
-
dropout=0,
|
| 1003 |
-
channel_mult=(1, 2, 4, 8),
|
| 1004 |
-
conv_resample=True,
|
| 1005 |
-
dims=2,
|
| 1006 |
-
num_classes=None,
|
| 1007 |
-
use_checkpoint=False,
|
| 1008 |
-
use_fp16=False,
|
| 1009 |
-
use_bf16=False,
|
| 1010 |
-
num_heads=-1,
|
| 1011 |
-
num_head_channels=-1,
|
| 1012 |
-
num_heads_upsample=-1,
|
| 1013 |
-
use_scale_shift_norm=False,
|
| 1014 |
-
resblock_updown=False,
|
| 1015 |
-
use_new_attention_order=False,
|
| 1016 |
-
use_spatial_transformer=False, # custom transformer support
|
| 1017 |
-
transformer_depth=1, # custom transformer support
|
| 1018 |
-
context_dim=None, # custom transformer support
|
| 1019 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 1020 |
-
legacy=True,
|
| 1021 |
-
disable_self_attentions=None,
|
| 1022 |
-
num_attention_blocks=None,
|
| 1023 |
-
disable_middle_self_attn=False,
|
| 1024 |
-
use_linear_in_transformer=False,
|
| 1025 |
-
adm_in_channels=None,
|
| 1026 |
-
camera_dim=None,
|
| 1027 |
-
with_ip=False, # wether add image prompt images
|
| 1028 |
-
ip_dim=0, # number of extra token, 4 for global 16 for local
|
| 1029 |
-
ip_weight=1.0, # weight for image prompt context
|
| 1030 |
-
ip_mode="local_resample", # which mode of adaptor, global or local
|
| 1031 |
-
):
|
| 1032 |
-
super().__init__(
|
| 1033 |
-
image_size,
|
| 1034 |
-
in_channels,
|
| 1035 |
-
model_channels,
|
| 1036 |
-
out_channels,
|
| 1037 |
-
num_res_blocks,
|
| 1038 |
-
attention_resolutions,
|
| 1039 |
-
dropout,
|
| 1040 |
-
channel_mult,
|
| 1041 |
-
conv_resample,
|
| 1042 |
-
dims,
|
| 1043 |
-
num_classes,
|
| 1044 |
-
use_checkpoint,
|
| 1045 |
-
use_fp16,
|
| 1046 |
-
use_bf16,
|
| 1047 |
-
num_heads,
|
| 1048 |
-
num_head_channels,
|
| 1049 |
-
num_heads_upsample,
|
| 1050 |
-
use_scale_shift_norm,
|
| 1051 |
-
resblock_updown,
|
| 1052 |
-
use_new_attention_order,
|
| 1053 |
-
use_spatial_transformer,
|
| 1054 |
-
transformer_depth,
|
| 1055 |
-
context_dim,
|
| 1056 |
-
n_embed,
|
| 1057 |
-
legacy,
|
| 1058 |
-
disable_self_attentions,
|
| 1059 |
-
num_attention_blocks,
|
| 1060 |
-
disable_middle_self_attn,
|
| 1061 |
-
use_linear_in_transformer,
|
| 1062 |
-
adm_in_channels,
|
| 1063 |
-
camera_dim,
|
| 1064 |
-
with_ip,
|
| 1065 |
-
ip_dim,
|
| 1066 |
-
ip_weight,
|
| 1067 |
-
ip_mode,
|
| 1068 |
-
)
|
| 1069 |
-
|
| 1070 |
-
def forward(
|
| 1071 |
-
self,
|
| 1072 |
-
x,
|
| 1073 |
-
timesteps=None,
|
| 1074 |
-
context=None,
|
| 1075 |
-
y=None,
|
| 1076 |
-
camera=None,
|
| 1077 |
-
num_frames=1,
|
| 1078 |
-
**kwargs,
|
| 1079 |
-
):
|
| 1080 |
-
"""
|
| 1081 |
-
Apply the model to an input batch.
|
| 1082 |
-
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
| 1083 |
-
:param timesteps: a 1-D batch of timesteps.
|
| 1084 |
-
:param context: a dict conditioning plugged in via crossattn
|
| 1085 |
-
:param y: an [N] Tensor of labels, if class-conditional, default None.
|
| 1086 |
-
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
| 1087 |
-
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
| 1088 |
-
"""
|
| 1089 |
-
assert (
|
| 1090 |
-
x.shape[0] % num_frames == 0
|
| 1091 |
-
), "[UNet] input batch size must be dividable by num_frames!"
|
| 1092 |
-
assert (y is not None) == (
|
| 1093 |
-
self.num_classes is not None
|
| 1094 |
-
), "must specify y if and only if the model is class-conditional"
|
| 1095 |
-
|
| 1096 |
-
hs = []
|
| 1097 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # shape: torch.Size([B, 320]) mean: 0.18, std: 0.68, min: -1.00, max: 1.00
|
| 1098 |
-
emb = self.time_embed(t_emb) # shape: torch.Size([B, 1280]) mean: 0.12, std: 0.57, min: -5.73, max: 6.51
|
| 1099 |
-
|
| 1100 |
-
if self.num_classes is not None:
|
| 1101 |
-
assert y.shape[0] == x.shape[0]
|
| 1102 |
-
emb = emb + self.label_emb(y)
|
| 1103 |
-
|
| 1104 |
-
# Add camera embeddings
|
| 1105 |
-
if camera is not None:
|
| 1106 |
-
assert camera.shape[0] == emb.shape[0]
|
| 1107 |
-
# camera embed: shape: torch.Size([B, 1280]) mean: -0.02, std: 0.27, min: -7.23, max: 2.04
|
| 1108 |
-
emb = emb + self.camera_embed(camera)
|
| 1109 |
-
ip = kwargs.get("ip", None)
|
| 1110 |
-
ip_img = kwargs.get("ip_img", None)
|
| 1111 |
-
pixel_images = kwargs.get("pixel_images", None)
|
| 1112 |
-
|
| 1113 |
-
if ip_img is not None:
|
| 1114 |
-
x[(num_frames-1)::num_frames, :, :, :] = ip_img
|
| 1115 |
-
|
| 1116 |
-
x = torch.cat((x, pixel_images), dim=1)
|
| 1117 |
-
|
| 1118 |
-
if ip is not None:
|
| 1119 |
-
ip_emb = self.image_embed(ip) # shape: torch.Size([B, 16, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 1120 |
-
context = torch.cat((context, ip_emb), 1) # shape: torch.Size([B, 93, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 1121 |
-
|
| 1122 |
-
h = x.type(self.dtype)
|
| 1123 |
-
for module in self.input_blocks:
|
| 1124 |
-
h = module(h, emb, context, num_frames=num_frames)
|
| 1125 |
-
hs.append(h)
|
| 1126 |
-
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
| 1127 |
-
for module in self.output_blocks:
|
| 1128 |
-
h = th.cat([h, hs.pop()], dim=1)
|
| 1129 |
-
h = module(h, emb, context, num_frames=num_frames)
|
| 1130 |
-
h = h.type(x.dtype) # shape: torch.Size([10, 320, 32, 32]) mean: -0.67, std: 3.96, min: -42.74, max: 25.58
|
| 1131 |
-
if self.predict_codebook_ids: # False
|
| 1132 |
-
return self.id_predictor(h)
|
| 1133 |
-
else:
|
| 1134 |
-
return self.out(h) # shape: torch.Size([10, 4, 32, 32]) mean: -0.00, std: 0.91, min: -3.65, max: 3.93
|
| 1135 |
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch as th
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
|
| 11 |
+
from imagedream.ldm.modules.diffusionmodules.util import (
|
| 12 |
+
checkpoint,
|
| 13 |
+
conv_nd,
|
| 14 |
+
linear,
|
| 15 |
+
avg_pool_nd,
|
| 16 |
+
zero_module,
|
| 17 |
+
normalization,
|
| 18 |
+
timestep_embedding,
|
| 19 |
+
convert_module_to_f16,
|
| 20 |
+
convert_module_to_f32
|
| 21 |
+
)
|
| 22 |
+
from imagedream.ldm.modules.attention import (
|
| 23 |
+
SpatialTransformer,
|
| 24 |
+
SpatialTransformer3D,
|
| 25 |
+
exists
|
| 26 |
+
)
|
| 27 |
+
from imagedream.ldm.modules.diffusionmodules.adaptors import (
|
| 28 |
+
Resampler,
|
| 29 |
+
ImageProjModel
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
## go
|
| 33 |
+
class AttentionPool2d(nn.Module):
|
| 34 |
+
"""
|
| 35 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
spacial_dim: int,
|
| 41 |
+
embed_dim: int,
|
| 42 |
+
num_heads_channels: int,
|
| 43 |
+
output_dim: int = None,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.positional_embedding = nn.Parameter(
|
| 47 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
| 48 |
+
)
|
| 49 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 50 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 51 |
+
self.num_heads = embed_dim // num_heads_channels
|
| 52 |
+
self.attention = QKVAttention(self.num_heads)
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
b, c, *_spatial = x.shape
|
| 56 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
| 57 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 58 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 59 |
+
x = self.qkv_proj(x)
|
| 60 |
+
x = self.attention(x)
|
| 61 |
+
x = self.c_proj(x)
|
| 62 |
+
return x[:, :, 0]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class TimestepBlock(nn.Module):
|
| 66 |
+
"""
|
| 67 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
@abstractmethod
|
| 71 |
+
def forward(self, x, emb):
|
| 72 |
+
"""
|
| 73 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 78 |
+
"""
|
| 79 |
+
A sequential module that passes timestep embeddings to the children that
|
| 80 |
+
support it as an extra input.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
def forward(self, x, emb, context=None, num_frames=1):
|
| 84 |
+
for layer in self:
|
| 85 |
+
if isinstance(layer, TimestepBlock):
|
| 86 |
+
x = layer(x, emb)
|
| 87 |
+
elif isinstance(layer, SpatialTransformer3D):
|
| 88 |
+
x = layer(x, context, num_frames=num_frames)
|
| 89 |
+
elif isinstance(layer, SpatialTransformer):
|
| 90 |
+
x = layer(x, context)
|
| 91 |
+
else:
|
| 92 |
+
x = layer(x)
|
| 93 |
+
return x
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class Upsample(nn.Module):
|
| 97 |
+
"""
|
| 98 |
+
An upsampling layer with an optional convolution.
|
| 99 |
+
:param channels: channels in the inputs and outputs.
|
| 100 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 101 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 102 |
+
upsampling occurs in the inner-two dimensions.
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.channels = channels
|
| 108 |
+
self.out_channels = out_channels or channels
|
| 109 |
+
self.use_conv = use_conv
|
| 110 |
+
self.dims = dims
|
| 111 |
+
if use_conv:
|
| 112 |
+
self.conv = conv_nd(
|
| 113 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
assert x.shape[1] == self.channels
|
| 118 |
+
if self.dims == 3:
|
| 119 |
+
x = F.interpolate(
|
| 120 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 121 |
+
)
|
| 122 |
+
else:
|
| 123 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 124 |
+
if self.use_conv:
|
| 125 |
+
x = self.conv(x)
|
| 126 |
+
return x
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class TransposedUpsample(nn.Module):
|
| 130 |
+
"Learned 2x upsampling without padding"
|
| 131 |
+
|
| 132 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.channels = channels
|
| 135 |
+
self.out_channels = out_channels or channels
|
| 136 |
+
|
| 137 |
+
self.up = nn.ConvTranspose2d(
|
| 138 |
+
self.channels, self.out_channels, kernel_size=ks, stride=2
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
def forward(self, x):
|
| 142 |
+
return self.up(x)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class Downsample(nn.Module):
|
| 146 |
+
"""
|
| 147 |
+
A downsampling layer with an optional convolution.
|
| 148 |
+
:param channels: channels in the inputs and outputs.
|
| 149 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 150 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 151 |
+
downsampling occurs in the inner-two dimensions.
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.channels = channels
|
| 157 |
+
self.out_channels = out_channels or channels
|
| 158 |
+
self.use_conv = use_conv
|
| 159 |
+
self.dims = dims
|
| 160 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 161 |
+
if use_conv:
|
| 162 |
+
self.op = conv_nd(
|
| 163 |
+
dims,
|
| 164 |
+
self.channels,
|
| 165 |
+
self.out_channels,
|
| 166 |
+
3,
|
| 167 |
+
stride=stride,
|
| 168 |
+
padding=padding,
|
| 169 |
+
)
|
| 170 |
+
else:
|
| 171 |
+
assert self.channels == self.out_channels
|
| 172 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 173 |
+
|
| 174 |
+
def forward(self, x):
|
| 175 |
+
assert x.shape[1] == self.channels
|
| 176 |
+
return self.op(x)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class ResBlock(TimestepBlock):
|
| 180 |
+
"""
|
| 181 |
+
A residual block that can optionally change the number of channels.
|
| 182 |
+
:param channels: the number of input channels.
|
| 183 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 184 |
+
:param dropout: the rate of dropout.
|
| 185 |
+
:param out_channels: if specified, the number of out channels.
|
| 186 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 187 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 188 |
+
channels in the skip connection.
|
| 189 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 190 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 191 |
+
:param up: if True, use this block for upsampling.
|
| 192 |
+
:param down: if True, use this block for downsampling.
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
def __init__(
|
| 196 |
+
self,
|
| 197 |
+
channels,
|
| 198 |
+
emb_channels,
|
| 199 |
+
dropout,
|
| 200 |
+
out_channels=None,
|
| 201 |
+
use_conv=False,
|
| 202 |
+
use_scale_shift_norm=False,
|
| 203 |
+
dims=2,
|
| 204 |
+
use_checkpoint=False,
|
| 205 |
+
up=False,
|
| 206 |
+
down=False,
|
| 207 |
+
):
|
| 208 |
+
super().__init__()
|
| 209 |
+
self.channels = channels
|
| 210 |
+
self.emb_channels = emb_channels
|
| 211 |
+
self.dropout = dropout
|
| 212 |
+
self.out_channels = out_channels or channels
|
| 213 |
+
self.use_conv = use_conv
|
| 214 |
+
self.use_checkpoint = use_checkpoint
|
| 215 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 216 |
+
|
| 217 |
+
self.in_layers = nn.Sequential(
|
| 218 |
+
normalization(channels),
|
| 219 |
+
nn.SiLU(),
|
| 220 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
self.updown = up or down
|
| 224 |
+
|
| 225 |
+
if up:
|
| 226 |
+
self.h_upd = Upsample(channels, False, dims)
|
| 227 |
+
self.x_upd = Upsample(channels, False, dims)
|
| 228 |
+
elif down:
|
| 229 |
+
self.h_upd = Downsample(channels, False, dims)
|
| 230 |
+
self.x_upd = Downsample(channels, False, dims)
|
| 231 |
+
else:
|
| 232 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 233 |
+
|
| 234 |
+
self.emb_layers = nn.Sequential(
|
| 235 |
+
nn.SiLU(),
|
| 236 |
+
linear(
|
| 237 |
+
emb_channels,
|
| 238 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 239 |
+
),
|
| 240 |
+
)
|
| 241 |
+
self.out_layers = nn.Sequential(
|
| 242 |
+
normalization(self.out_channels),
|
| 243 |
+
nn.SiLU(),
|
| 244 |
+
nn.Dropout(p=dropout),
|
| 245 |
+
zero_module(
|
| 246 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 247 |
+
),
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
if self.out_channels == channels:
|
| 251 |
+
self.skip_connection = nn.Identity()
|
| 252 |
+
elif use_conv:
|
| 253 |
+
self.skip_connection = conv_nd(
|
| 254 |
+
dims, channels, self.out_channels, 3, padding=1
|
| 255 |
+
)
|
| 256 |
+
else:
|
| 257 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 258 |
+
|
| 259 |
+
def forward(self, x, emb):
|
| 260 |
+
"""
|
| 261 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 262 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 263 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 264 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 265 |
+
"""
|
| 266 |
+
return checkpoint(
|
| 267 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
def _forward(self, x, emb):
|
| 271 |
+
if self.updown:
|
| 272 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 273 |
+
h = in_rest(x)
|
| 274 |
+
h = self.h_upd(h)
|
| 275 |
+
x = self.x_upd(x)
|
| 276 |
+
h = in_conv(h)
|
| 277 |
+
else:
|
| 278 |
+
h = self.in_layers(x)
|
| 279 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 280 |
+
while len(emb_out.shape) < len(h.shape):
|
| 281 |
+
emb_out = emb_out[..., None]
|
| 282 |
+
if self.use_scale_shift_norm:
|
| 283 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 284 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 285 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 286 |
+
h = out_rest(h)
|
| 287 |
+
else:
|
| 288 |
+
h = h + emb_out
|
| 289 |
+
h = self.out_layers(h)
|
| 290 |
+
return self.skip_connection(x) + h
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class AttentionBlock(nn.Module):
|
| 294 |
+
"""
|
| 295 |
+
An attention block that allows spatial positions to attend to each other.
|
| 296 |
+
Originally ported from here, but adapted to the N-d case.
|
| 297 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
def __init__(
|
| 301 |
+
self,
|
| 302 |
+
channels,
|
| 303 |
+
num_heads=1,
|
| 304 |
+
num_head_channels=-1,
|
| 305 |
+
use_checkpoint=False,
|
| 306 |
+
use_new_attention_order=False,
|
| 307 |
+
):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.channels = channels
|
| 310 |
+
if num_head_channels == -1:
|
| 311 |
+
self.num_heads = num_heads
|
| 312 |
+
else:
|
| 313 |
+
assert (
|
| 314 |
+
channels % num_head_channels == 0
|
| 315 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 316 |
+
self.num_heads = channels // num_head_channels
|
| 317 |
+
self.use_checkpoint = use_checkpoint
|
| 318 |
+
self.norm = normalization(channels)
|
| 319 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 320 |
+
if use_new_attention_order:
|
| 321 |
+
# split qkv before split heads
|
| 322 |
+
self.attention = QKVAttention(self.num_heads)
|
| 323 |
+
else:
|
| 324 |
+
# split heads before split qkv
|
| 325 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 326 |
+
|
| 327 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 328 |
+
|
| 329 |
+
def forward(self, x):
|
| 330 |
+
return checkpoint(
|
| 331 |
+
self._forward, (x,), self.parameters(), True
|
| 332 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 333 |
+
# return pt_checkpoint(self._forward, x) # pytorch
|
| 334 |
+
|
| 335 |
+
def _forward(self, x):
|
| 336 |
+
b, c, *spatial = x.shape
|
| 337 |
+
x = x.reshape(b, c, -1)
|
| 338 |
+
qkv = self.qkv(self.norm(x))
|
| 339 |
+
h = self.attention(qkv)
|
| 340 |
+
h = self.proj_out(h)
|
| 341 |
+
return (x + h).reshape(b, c, *spatial)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def count_flops_attn(model, _x, y):
|
| 345 |
+
"""
|
| 346 |
+
A counter for the `thop` package to count the operations in an
|
| 347 |
+
attention operation.
|
| 348 |
+
Meant to be used like:
|
| 349 |
+
macs, params = thop.profile(
|
| 350 |
+
model,
|
| 351 |
+
inputs=(inputs, timestamps),
|
| 352 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 353 |
+
)
|
| 354 |
+
"""
|
| 355 |
+
b, c, *spatial = y[0].shape
|
| 356 |
+
num_spatial = int(np.prod(spatial))
|
| 357 |
+
# We perform two matmuls with the same number of ops.
|
| 358 |
+
# The first computes the weight matrix, the second computes
|
| 359 |
+
# the combination of the value vectors.
|
| 360 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
| 361 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class QKVAttentionLegacy(nn.Module):
|
| 365 |
+
"""
|
| 366 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
def __init__(self, n_heads):
|
| 370 |
+
super().__init__()
|
| 371 |
+
self.n_heads = n_heads
|
| 372 |
+
|
| 373 |
+
def forward(self, qkv):
|
| 374 |
+
"""
|
| 375 |
+
Apply QKV attention.
|
| 376 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 377 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 378 |
+
"""
|
| 379 |
+
bs, width, length = qkv.shape
|
| 380 |
+
assert width % (3 * self.n_heads) == 0
|
| 381 |
+
ch = width // (3 * self.n_heads)
|
| 382 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 383 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 384 |
+
weight = th.einsum(
|
| 385 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 386 |
+
) # More stable with f16 than dividing afterwards
|
| 387 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 388 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 389 |
+
return a.reshape(bs, -1, length)
|
| 390 |
+
|
| 391 |
+
@staticmethod
|
| 392 |
+
def count_flops(model, _x, y):
|
| 393 |
+
return count_flops_attn(model, _x, y)
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
class QKVAttention(nn.Module):
|
| 397 |
+
"""
|
| 398 |
+
A module which performs QKV attention and splits in a different order.
|
| 399 |
+
"""
|
| 400 |
+
|
| 401 |
+
def __init__(self, n_heads):
|
| 402 |
+
super().__init__()
|
| 403 |
+
self.n_heads = n_heads
|
| 404 |
+
|
| 405 |
+
def forward(self, qkv):
|
| 406 |
+
"""
|
| 407 |
+
Apply QKV attention.
|
| 408 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 409 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 410 |
+
"""
|
| 411 |
+
bs, width, length = qkv.shape
|
| 412 |
+
assert width % (3 * self.n_heads) == 0
|
| 413 |
+
ch = width // (3 * self.n_heads)
|
| 414 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 415 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 416 |
+
weight = th.einsum(
|
| 417 |
+
"bct,bcs->bts",
|
| 418 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 419 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 420 |
+
) # More stable with f16 than dividing afterwards
|
| 421 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 422 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
| 423 |
+
return a.reshape(bs, -1, length)
|
| 424 |
+
|
| 425 |
+
@staticmethod
|
| 426 |
+
def count_flops(model, _x, y):
|
| 427 |
+
return count_flops_attn(model, _x, y)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
class Timestep(nn.Module):
|
| 431 |
+
def __init__(self, dim):
|
| 432 |
+
super().__init__()
|
| 433 |
+
self.dim = dim
|
| 434 |
+
|
| 435 |
+
def forward(self, t):
|
| 436 |
+
return timestep_embedding(t, self.dim)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class MultiViewUNetModel(nn.Module):
|
| 440 |
+
"""
|
| 441 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
| 442 |
+
:param in_channels: channels in the input Tensor.
|
| 443 |
+
:param model_channels: base channel count for the model.
|
| 444 |
+
:param out_channels: channels in the output Tensor.
|
| 445 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 446 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 447 |
+
attention will take place. May be a set, list, or tuple.
|
| 448 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 449 |
+
will be used.
|
| 450 |
+
:param dropout: the dropout probability.
|
| 451 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 452 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 453 |
+
downsampling.
|
| 454 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 455 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 456 |
+
class-conditional with `num_classes` classes.
|
| 457 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 458 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 459 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 460 |
+
a fixed channel width per attention head.
|
| 461 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 462 |
+
of heads for upsampling. Deprecated.
|
| 463 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 464 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 465 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 466 |
+
increased efficiency.
|
| 467 |
+
:param camera_dim: dimensionality of camera input.
|
| 468 |
+
"""
|
| 469 |
+
|
| 470 |
+
def __init__(
|
| 471 |
+
self,
|
| 472 |
+
image_size,
|
| 473 |
+
in_channels,
|
| 474 |
+
model_channels,
|
| 475 |
+
out_channels,
|
| 476 |
+
num_res_blocks,
|
| 477 |
+
attention_resolutions,
|
| 478 |
+
dropout=0,
|
| 479 |
+
channel_mult=(1, 2, 4, 8),
|
| 480 |
+
conv_resample=True,
|
| 481 |
+
dims=2,
|
| 482 |
+
num_classes=None,
|
| 483 |
+
use_checkpoint=False,
|
| 484 |
+
use_fp16=False,
|
| 485 |
+
use_bf16=False,
|
| 486 |
+
num_heads=-1,
|
| 487 |
+
num_head_channels=-1,
|
| 488 |
+
num_heads_upsample=-1,
|
| 489 |
+
use_scale_shift_norm=False,
|
| 490 |
+
resblock_updown=False,
|
| 491 |
+
use_new_attention_order=False,
|
| 492 |
+
use_spatial_transformer=False, # custom transformer support
|
| 493 |
+
transformer_depth=1, # custom transformer support
|
| 494 |
+
context_dim=None, # custom transformer support
|
| 495 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 496 |
+
legacy=True,
|
| 497 |
+
disable_self_attentions=None,
|
| 498 |
+
num_attention_blocks=None,
|
| 499 |
+
disable_middle_self_attn=False,
|
| 500 |
+
use_linear_in_transformer=False,
|
| 501 |
+
adm_in_channels=None,
|
| 502 |
+
camera_dim=None,
|
| 503 |
+
with_ip=False, # wether add image prompt images
|
| 504 |
+
ip_dim=0, # number of extra token, 4 for global 16 for local
|
| 505 |
+
ip_weight=1.0, # weight for image prompt context
|
| 506 |
+
ip_mode="local_resample", # which mode of adaptor, global or local
|
| 507 |
+
):
|
| 508 |
+
super().__init__()
|
| 509 |
+
if use_spatial_transformer:
|
| 510 |
+
assert (
|
| 511 |
+
context_dim is not None
|
| 512 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
| 513 |
+
|
| 514 |
+
if context_dim is not None:
|
| 515 |
+
assert (
|
| 516 |
+
use_spatial_transformer
|
| 517 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
| 518 |
+
from omegaconf.listconfig import ListConfig
|
| 519 |
+
|
| 520 |
+
if type(context_dim) == ListConfig:
|
| 521 |
+
context_dim = list(context_dim)
|
| 522 |
+
|
| 523 |
+
if num_heads_upsample == -1:
|
| 524 |
+
num_heads_upsample = num_heads
|
| 525 |
+
|
| 526 |
+
if num_heads == -1:
|
| 527 |
+
assert (
|
| 528 |
+
num_head_channels != -1
|
| 529 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 530 |
+
|
| 531 |
+
if num_head_channels == -1:
|
| 532 |
+
assert (
|
| 533 |
+
num_heads != -1
|
| 534 |
+
), "Either num_heads or num_head_channels has to be set"
|
| 535 |
+
|
| 536 |
+
self.image_size = image_size
|
| 537 |
+
self.in_channels = in_channels
|
| 538 |
+
self.model_channels = model_channels
|
| 539 |
+
self.out_channels = out_channels
|
| 540 |
+
if isinstance(num_res_blocks, int):
|
| 541 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 542 |
+
else:
|
| 543 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 544 |
+
raise ValueError(
|
| 545 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
| 546 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
| 547 |
+
)
|
| 548 |
+
self.num_res_blocks = num_res_blocks
|
| 549 |
+
if disable_self_attentions is not None:
|
| 550 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 551 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 552 |
+
if num_attention_blocks is not None:
|
| 553 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 554 |
+
assert all(
|
| 555 |
+
map(
|
| 556 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
| 557 |
+
range(len(num_attention_blocks)),
|
| 558 |
+
)
|
| 559 |
+
)
|
| 560 |
+
print(
|
| 561 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 562 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 563 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 564 |
+
f"attention will still not be set."
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
self.attention_resolutions = attention_resolutions
|
| 568 |
+
self.dropout = dropout
|
| 569 |
+
self.channel_mult = channel_mult
|
| 570 |
+
self.conv_resample = conv_resample
|
| 571 |
+
self.num_classes = num_classes
|
| 572 |
+
self.use_checkpoint = use_checkpoint
|
| 573 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 574 |
+
self.dtype = th.bfloat16 if use_bf16 else self.dtype
|
| 575 |
+
self.num_heads = num_heads
|
| 576 |
+
self.num_head_channels = num_head_channels
|
| 577 |
+
self.num_heads_upsample = num_heads_upsample
|
| 578 |
+
self.predict_codebook_ids = n_embed is not None
|
| 579 |
+
|
| 580 |
+
self.with_ip = with_ip # wether there is image prompt
|
| 581 |
+
self.ip_dim = ip_dim # num of extra token, 4 for global 16 for local
|
| 582 |
+
self.ip_weight = ip_weight
|
| 583 |
+
assert ip_mode in ["global", "local_resample"]
|
| 584 |
+
self.ip_mode = ip_mode # which mode of adaptor
|
| 585 |
+
|
| 586 |
+
time_embed_dim = model_channels * 4
|
| 587 |
+
self.time_embed = nn.Sequential(
|
| 588 |
+
linear(model_channels, time_embed_dim),
|
| 589 |
+
nn.SiLU(),
|
| 590 |
+
linear(time_embed_dim, time_embed_dim),
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
if camera_dim is not None:
|
| 594 |
+
time_embed_dim = model_channels * 4
|
| 595 |
+
self.camera_embed = nn.Sequential(
|
| 596 |
+
linear(camera_dim, time_embed_dim),
|
| 597 |
+
nn.SiLU(),
|
| 598 |
+
linear(time_embed_dim, time_embed_dim),
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
if self.num_classes is not None:
|
| 602 |
+
if isinstance(self.num_classes, int):
|
| 603 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 604 |
+
elif self.num_classes == "continuous":
|
| 605 |
+
print("setting up linear c_adm embedding layer")
|
| 606 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 607 |
+
elif self.num_classes == "sequential":
|
| 608 |
+
assert adm_in_channels is not None
|
| 609 |
+
self.label_emb = nn.Sequential(
|
| 610 |
+
nn.Sequential(
|
| 611 |
+
linear(adm_in_channels, time_embed_dim),
|
| 612 |
+
nn.SiLU(),
|
| 613 |
+
linear(time_embed_dim, time_embed_dim),
|
| 614 |
+
)
|
| 615 |
+
)
|
| 616 |
+
else:
|
| 617 |
+
raise ValueError()
|
| 618 |
+
|
| 619 |
+
if self.with_ip and (context_dim is not None) and ip_dim > 0:
|
| 620 |
+
if self.ip_mode == "local_resample":
|
| 621 |
+
# ip-adapter-plus
|
| 622 |
+
hidden_dim = 1280
|
| 623 |
+
self.image_embed = Resampler(
|
| 624 |
+
dim=context_dim,
|
| 625 |
+
depth=4,
|
| 626 |
+
dim_head=64,
|
| 627 |
+
heads=12,
|
| 628 |
+
num_queries=ip_dim, # num token
|
| 629 |
+
embedding_dim=hidden_dim,
|
| 630 |
+
output_dim=context_dim,
|
| 631 |
+
ff_mult=4,
|
| 632 |
+
)
|
| 633 |
+
elif self.ip_mode == "global":
|
| 634 |
+
self.image_embed = ImageProjModel(
|
| 635 |
+
cross_attention_dim=context_dim,
|
| 636 |
+
clip_extra_context_tokens=ip_dim)
|
| 637 |
+
else:
|
| 638 |
+
raise ValueError(f"{self.ip_mode} is not supported")
|
| 639 |
+
|
| 640 |
+
self.input_blocks = nn.ModuleList(
|
| 641 |
+
[
|
| 642 |
+
TimestepEmbedSequential(
|
| 643 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 644 |
+
)
|
| 645 |
+
]
|
| 646 |
+
)
|
| 647 |
+
self._feature_size = model_channels
|
| 648 |
+
input_block_chans = [model_channels]
|
| 649 |
+
ch = model_channels
|
| 650 |
+
ds = 1
|
| 651 |
+
for level, mult in enumerate(channel_mult):
|
| 652 |
+
for nr in range(self.num_res_blocks[level]):
|
| 653 |
+
layers = [
|
| 654 |
+
ResBlock(
|
| 655 |
+
ch,
|
| 656 |
+
time_embed_dim,
|
| 657 |
+
dropout,
|
| 658 |
+
out_channels=mult * model_channels,
|
| 659 |
+
dims=dims,
|
| 660 |
+
use_checkpoint=use_checkpoint,
|
| 661 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 662 |
+
)
|
| 663 |
+
]
|
| 664 |
+
ch = mult * model_channels
|
| 665 |
+
if ds in attention_resolutions:
|
| 666 |
+
if num_head_channels == -1:
|
| 667 |
+
dim_head = ch // num_heads
|
| 668 |
+
else:
|
| 669 |
+
num_heads = ch // num_head_channels
|
| 670 |
+
dim_head = num_head_channels
|
| 671 |
+
if legacy:
|
| 672 |
+
# num_heads = 1
|
| 673 |
+
dim_head = (
|
| 674 |
+
ch // num_heads
|
| 675 |
+
if use_spatial_transformer
|
| 676 |
+
else num_head_channels
|
| 677 |
+
)
|
| 678 |
+
if exists(disable_self_attentions):
|
| 679 |
+
disabled_sa = disable_self_attentions[level]
|
| 680 |
+
else:
|
| 681 |
+
disabled_sa = False
|
| 682 |
+
|
| 683 |
+
if (
|
| 684 |
+
not exists(num_attention_blocks)
|
| 685 |
+
or nr < num_attention_blocks[level]
|
| 686 |
+
):
|
| 687 |
+
layers.append(
|
| 688 |
+
AttentionBlock(
|
| 689 |
+
ch,
|
| 690 |
+
use_checkpoint=use_checkpoint,
|
| 691 |
+
num_heads=num_heads,
|
| 692 |
+
num_head_channels=dim_head,
|
| 693 |
+
use_new_attention_order=use_new_attention_order,
|
| 694 |
+
)
|
| 695 |
+
if not use_spatial_transformer
|
| 696 |
+
else SpatialTransformer3D(
|
| 697 |
+
ch,
|
| 698 |
+
num_heads,
|
| 699 |
+
dim_head,
|
| 700 |
+
depth=transformer_depth,
|
| 701 |
+
context_dim=context_dim,
|
| 702 |
+
disable_self_attn=disabled_sa,
|
| 703 |
+
use_linear=use_linear_in_transformer,
|
| 704 |
+
use_checkpoint=use_checkpoint,
|
| 705 |
+
with_ip=self.with_ip,
|
| 706 |
+
ip_dim=self.ip_dim,
|
| 707 |
+
ip_weight=self.ip_weight
|
| 708 |
+
)
|
| 709 |
+
)
|
| 710 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 711 |
+
self._feature_size += ch
|
| 712 |
+
input_block_chans.append(ch)
|
| 713 |
+
|
| 714 |
+
if level != len(channel_mult) - 1:
|
| 715 |
+
out_ch = ch
|
| 716 |
+
self.input_blocks.append(
|
| 717 |
+
TimestepEmbedSequential(
|
| 718 |
+
ResBlock(
|
| 719 |
+
ch,
|
| 720 |
+
time_embed_dim,
|
| 721 |
+
dropout,
|
| 722 |
+
out_channels=out_ch,
|
| 723 |
+
dims=dims,
|
| 724 |
+
use_checkpoint=use_checkpoint,
|
| 725 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 726 |
+
down=True,
|
| 727 |
+
)
|
| 728 |
+
if resblock_updown
|
| 729 |
+
else Downsample(
|
| 730 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 731 |
+
)
|
| 732 |
+
)
|
| 733 |
+
)
|
| 734 |
+
ch = out_ch
|
| 735 |
+
input_block_chans.append(ch)
|
| 736 |
+
ds *= 2
|
| 737 |
+
self._feature_size += ch
|
| 738 |
+
|
| 739 |
+
if num_head_channels == -1:
|
| 740 |
+
dim_head = ch // num_heads
|
| 741 |
+
else:
|
| 742 |
+
num_heads = ch // num_head_channels
|
| 743 |
+
dim_head = num_head_channels
|
| 744 |
+
if legacy:
|
| 745 |
+
# num_heads = 1
|
| 746 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 747 |
+
self.middle_block = TimestepEmbedSequential(
|
| 748 |
+
ResBlock(
|
| 749 |
+
ch,
|
| 750 |
+
time_embed_dim,
|
| 751 |
+
dropout,
|
| 752 |
+
dims=dims,
|
| 753 |
+
use_checkpoint=use_checkpoint,
|
| 754 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 755 |
+
),
|
| 756 |
+
AttentionBlock(
|
| 757 |
+
ch,
|
| 758 |
+
use_checkpoint=use_checkpoint,
|
| 759 |
+
num_heads=num_heads,
|
| 760 |
+
num_head_channels=dim_head,
|
| 761 |
+
use_new_attention_order=use_new_attention_order,
|
| 762 |
+
)
|
| 763 |
+
if not use_spatial_transformer
|
| 764 |
+
else SpatialTransformer3D( # always uses a self-attn
|
| 765 |
+
ch,
|
| 766 |
+
num_heads,
|
| 767 |
+
dim_head,
|
| 768 |
+
depth=transformer_depth,
|
| 769 |
+
context_dim=context_dim,
|
| 770 |
+
disable_self_attn=disable_middle_self_attn,
|
| 771 |
+
use_linear=use_linear_in_transformer,
|
| 772 |
+
use_checkpoint=use_checkpoint,
|
| 773 |
+
with_ip=self.with_ip,
|
| 774 |
+
ip_dim=self.ip_dim,
|
| 775 |
+
ip_weight=self.ip_weight
|
| 776 |
+
),
|
| 777 |
+
ResBlock(
|
| 778 |
+
ch,
|
| 779 |
+
time_embed_dim,
|
| 780 |
+
dropout,
|
| 781 |
+
dims=dims,
|
| 782 |
+
use_checkpoint=use_checkpoint,
|
| 783 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 784 |
+
),
|
| 785 |
+
)
|
| 786 |
+
self._feature_size += ch
|
| 787 |
+
|
| 788 |
+
self.output_blocks = nn.ModuleList([])
|
| 789 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 790 |
+
for i in range(self.num_res_blocks[level] + 1):
|
| 791 |
+
ich = input_block_chans.pop()
|
| 792 |
+
layers = [
|
| 793 |
+
ResBlock(
|
| 794 |
+
ch + ich,
|
| 795 |
+
time_embed_dim,
|
| 796 |
+
dropout,
|
| 797 |
+
out_channels=model_channels * mult,
|
| 798 |
+
dims=dims,
|
| 799 |
+
use_checkpoint=use_checkpoint,
|
| 800 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 801 |
+
)
|
| 802 |
+
]
|
| 803 |
+
ch = model_channels * mult
|
| 804 |
+
if ds in attention_resolutions:
|
| 805 |
+
if num_head_channels == -1:
|
| 806 |
+
dim_head = ch // num_heads
|
| 807 |
+
else:
|
| 808 |
+
num_heads = ch // num_head_channels
|
| 809 |
+
dim_head = num_head_channels
|
| 810 |
+
if legacy:
|
| 811 |
+
# num_heads = 1
|
| 812 |
+
dim_head = (
|
| 813 |
+
ch // num_heads
|
| 814 |
+
if use_spatial_transformer
|
| 815 |
+
else num_head_channels
|
| 816 |
+
)
|
| 817 |
+
if exists(disable_self_attentions):
|
| 818 |
+
disabled_sa = disable_self_attentions[level]
|
| 819 |
+
else:
|
| 820 |
+
disabled_sa = False
|
| 821 |
+
|
| 822 |
+
if (
|
| 823 |
+
not exists(num_attention_blocks)
|
| 824 |
+
or i < num_attention_blocks[level]
|
| 825 |
+
):
|
| 826 |
+
layers.append(
|
| 827 |
+
AttentionBlock(
|
| 828 |
+
ch,
|
| 829 |
+
use_checkpoint=use_checkpoint,
|
| 830 |
+
num_heads=num_heads_upsample,
|
| 831 |
+
num_head_channels=dim_head,
|
| 832 |
+
use_new_attention_order=use_new_attention_order,
|
| 833 |
+
)
|
| 834 |
+
if not use_spatial_transformer
|
| 835 |
+
else SpatialTransformer3D(
|
| 836 |
+
ch,
|
| 837 |
+
num_heads,
|
| 838 |
+
dim_head,
|
| 839 |
+
depth=transformer_depth,
|
| 840 |
+
context_dim=context_dim,
|
| 841 |
+
disable_self_attn=disabled_sa,
|
| 842 |
+
use_linear=use_linear_in_transformer,
|
| 843 |
+
use_checkpoint=use_checkpoint,
|
| 844 |
+
with_ip=self.with_ip,
|
| 845 |
+
ip_dim=self.ip_dim,
|
| 846 |
+
ip_weight=self.ip_weight
|
| 847 |
+
)
|
| 848 |
+
)
|
| 849 |
+
if level and i == self.num_res_blocks[level]:
|
| 850 |
+
out_ch = ch
|
| 851 |
+
layers.append(
|
| 852 |
+
ResBlock(
|
| 853 |
+
ch,
|
| 854 |
+
time_embed_dim,
|
| 855 |
+
dropout,
|
| 856 |
+
out_channels=out_ch,
|
| 857 |
+
dims=dims,
|
| 858 |
+
use_checkpoint=use_checkpoint,
|
| 859 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 860 |
+
up=True,
|
| 861 |
+
)
|
| 862 |
+
if resblock_updown
|
| 863 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 864 |
+
)
|
| 865 |
+
ds //= 2
|
| 866 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 867 |
+
self._feature_size += ch
|
| 868 |
+
|
| 869 |
+
self.out = nn.Sequential(
|
| 870 |
+
normalization(ch),
|
| 871 |
+
nn.SiLU(),
|
| 872 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 873 |
+
)
|
| 874 |
+
if self.predict_codebook_ids:
|
| 875 |
+
self.id_predictor = nn.Sequential(
|
| 876 |
+
normalization(ch),
|
| 877 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 878 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 879 |
+
)
|
| 880 |
+
|
| 881 |
+
def convert_to_fp16(self):
|
| 882 |
+
"""
|
| 883 |
+
Convert the torso of the model to float16.
|
| 884 |
+
"""
|
| 885 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 886 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 887 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 888 |
+
|
| 889 |
+
def convert_to_fp32(self):
|
| 890 |
+
"""
|
| 891 |
+
Convert the torso of the model to float32.
|
| 892 |
+
"""
|
| 893 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 894 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 895 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 896 |
+
|
| 897 |
+
def forward(
|
| 898 |
+
self,
|
| 899 |
+
x,
|
| 900 |
+
timesteps=None,
|
| 901 |
+
context=None,
|
| 902 |
+
y=None,
|
| 903 |
+
camera=None,
|
| 904 |
+
num_frames=1,
|
| 905 |
+
**kwargs,
|
| 906 |
+
):
|
| 907 |
+
"""
|
| 908 |
+
Apply the model to an input batch.
|
| 909 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
| 910 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 911 |
+
:param context: a dict conditioning plugged in via crossattn
|
| 912 |
+
:param y: an [N] Tensor of labels, if class-conditional, default None.
|
| 913 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
| 914 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
| 915 |
+
"""
|
| 916 |
+
assert (
|
| 917 |
+
x.shape[0] % num_frames == 0
|
| 918 |
+
), "[UNet] input batch size must be dividable by num_frames!"
|
| 919 |
+
assert (y is not None) == (
|
| 920 |
+
self.num_classes is not None
|
| 921 |
+
), "must specify y if and only if the model is class-conditional"
|
| 922 |
+
|
| 923 |
+
hs = []
|
| 924 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # shape: torch.Size([B, 320]) mean: 0.18, std: 0.68, min: -1.00, max: 1.00
|
| 925 |
+
emb = self.time_embed(t_emb) # shape: torch.Size([B, 1280]) mean: 0.12, std: 0.57, min: -5.73, max: 6.51
|
| 926 |
+
|
| 927 |
+
if self.num_classes is not None:
|
| 928 |
+
assert y.shape[0] == x.shape[0]
|
| 929 |
+
emb = emb + self.label_emb(y)
|
| 930 |
+
|
| 931 |
+
# Add camera embeddings
|
| 932 |
+
if camera is not None:
|
| 933 |
+
assert camera.shape[0] == emb.shape[0]
|
| 934 |
+
# camera embed: shape: torch.Size([B, 1280]) mean: -0.02, std: 0.27, min: -7.23, max: 2.04
|
| 935 |
+
emb = emb + self.camera_embed(camera)
|
| 936 |
+
ip = kwargs.get("ip", None)
|
| 937 |
+
ip_img = kwargs.get("ip_img", None)
|
| 938 |
+
|
| 939 |
+
if ip_img is not None:
|
| 940 |
+
x[(num_frames-1)::num_frames, :, :, :] = ip_img
|
| 941 |
+
|
| 942 |
+
if ip is not None:
|
| 943 |
+
ip_emb = self.image_embed(ip) # shape: torch.Size([B, 16, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 944 |
+
context = torch.cat((context, ip_emb), 1) # shape: torch.Size([B, 93, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 945 |
+
|
| 946 |
+
h = x.type(self.dtype)
|
| 947 |
+
for module in self.input_blocks:
|
| 948 |
+
h = module(h, emb, context, num_frames=num_frames)
|
| 949 |
+
hs.append(h)
|
| 950 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
| 951 |
+
for module in self.output_blocks:
|
| 952 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 953 |
+
h = module(h, emb, context, num_frames=num_frames)
|
| 954 |
+
h = h.type(x.dtype) # shape: torch.Size([10, 320, 32, 32]) mean: -0.67, std: 3.96, min: -42.74, max: 25.58
|
| 955 |
+
if self.predict_codebook_ids: # False
|
| 956 |
+
return self.id_predictor(h)
|
| 957 |
+
else:
|
| 958 |
+
return self.out(h) # shape: torch.Size([10, 4, 32, 32]) mean: -0.00, std: 0.91, min: -3.65, max: 3.93
|
| 959 |
+
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
class MultiViewUNetModelStage2(MultiViewUNetModel):
|
| 964 |
+
"""
|
| 965 |
+
The full multi-view UNet model with attention, timestep embedding and camera embedding.
|
| 966 |
+
:param in_channels: channels in the input Tensor.
|
| 967 |
+
:param model_channels: base channel count for the model.
|
| 968 |
+
:param out_channels: channels in the output Tensor.
|
| 969 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 970 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 971 |
+
attention will take place. May be a set, list, or tuple.
|
| 972 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 973 |
+
will be used.
|
| 974 |
+
:param dropout: the dropout probability.
|
| 975 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 976 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 977 |
+
downsampling.
|
| 978 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 979 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 980 |
+
class-conditional with `num_classes` classes.
|
| 981 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 982 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 983 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 984 |
+
a fixed channel width per attention head.
|
| 985 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 986 |
+
of heads for upsampling. Deprecated.
|
| 987 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 988 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 989 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 990 |
+
increased efficiency.
|
| 991 |
+
:param camera_dim: dimensionality of camera input.
|
| 992 |
+
"""
|
| 993 |
+
|
| 994 |
+
def __init__(
|
| 995 |
+
self,
|
| 996 |
+
image_size,
|
| 997 |
+
in_channels,
|
| 998 |
+
model_channels,
|
| 999 |
+
out_channels,
|
| 1000 |
+
num_res_blocks,
|
| 1001 |
+
attention_resolutions,
|
| 1002 |
+
dropout=0,
|
| 1003 |
+
channel_mult=(1, 2, 4, 8),
|
| 1004 |
+
conv_resample=True,
|
| 1005 |
+
dims=2,
|
| 1006 |
+
num_classes=None,
|
| 1007 |
+
use_checkpoint=False,
|
| 1008 |
+
use_fp16=False,
|
| 1009 |
+
use_bf16=False,
|
| 1010 |
+
num_heads=-1,
|
| 1011 |
+
num_head_channels=-1,
|
| 1012 |
+
num_heads_upsample=-1,
|
| 1013 |
+
use_scale_shift_norm=False,
|
| 1014 |
+
resblock_updown=False,
|
| 1015 |
+
use_new_attention_order=False,
|
| 1016 |
+
use_spatial_transformer=False, # custom transformer support
|
| 1017 |
+
transformer_depth=1, # custom transformer support
|
| 1018 |
+
context_dim=None, # custom transformer support
|
| 1019 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 1020 |
+
legacy=True,
|
| 1021 |
+
disable_self_attentions=None,
|
| 1022 |
+
num_attention_blocks=None,
|
| 1023 |
+
disable_middle_self_attn=False,
|
| 1024 |
+
use_linear_in_transformer=False,
|
| 1025 |
+
adm_in_channels=None,
|
| 1026 |
+
camera_dim=None,
|
| 1027 |
+
with_ip=False, # wether add image prompt images
|
| 1028 |
+
ip_dim=0, # number of extra token, 4 for global 16 for local
|
| 1029 |
+
ip_weight=1.0, # weight for image prompt context
|
| 1030 |
+
ip_mode="local_resample", # which mode of adaptor, global or local
|
| 1031 |
+
):
|
| 1032 |
+
super().__init__(
|
| 1033 |
+
image_size,
|
| 1034 |
+
in_channels,
|
| 1035 |
+
model_channels,
|
| 1036 |
+
out_channels,
|
| 1037 |
+
num_res_blocks,
|
| 1038 |
+
attention_resolutions,
|
| 1039 |
+
dropout,
|
| 1040 |
+
channel_mult,
|
| 1041 |
+
conv_resample,
|
| 1042 |
+
dims,
|
| 1043 |
+
num_classes,
|
| 1044 |
+
use_checkpoint,
|
| 1045 |
+
use_fp16,
|
| 1046 |
+
use_bf16,
|
| 1047 |
+
num_heads,
|
| 1048 |
+
num_head_channels,
|
| 1049 |
+
num_heads_upsample,
|
| 1050 |
+
use_scale_shift_norm,
|
| 1051 |
+
resblock_updown,
|
| 1052 |
+
use_new_attention_order,
|
| 1053 |
+
use_spatial_transformer,
|
| 1054 |
+
transformer_depth,
|
| 1055 |
+
context_dim,
|
| 1056 |
+
n_embed,
|
| 1057 |
+
legacy,
|
| 1058 |
+
disable_self_attentions,
|
| 1059 |
+
num_attention_blocks,
|
| 1060 |
+
disable_middle_self_attn,
|
| 1061 |
+
use_linear_in_transformer,
|
| 1062 |
+
adm_in_channels,
|
| 1063 |
+
camera_dim,
|
| 1064 |
+
with_ip,
|
| 1065 |
+
ip_dim,
|
| 1066 |
+
ip_weight,
|
| 1067 |
+
ip_mode,
|
| 1068 |
+
)
|
| 1069 |
+
|
| 1070 |
+
def forward(
|
| 1071 |
+
self,
|
| 1072 |
+
x,
|
| 1073 |
+
timesteps=None,
|
| 1074 |
+
context=None,
|
| 1075 |
+
y=None,
|
| 1076 |
+
camera=None,
|
| 1077 |
+
num_frames=1,
|
| 1078 |
+
**kwargs,
|
| 1079 |
+
):
|
| 1080 |
+
"""
|
| 1081 |
+
Apply the model to an input batch.
|
| 1082 |
+
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
|
| 1083 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 1084 |
+
:param context: a dict conditioning plugged in via crossattn
|
| 1085 |
+
:param y: an [N] Tensor of labels, if class-conditional, default None.
|
| 1086 |
+
:param num_frames: a integer indicating number of frames for tensor reshaping.
|
| 1087 |
+
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
|
| 1088 |
+
"""
|
| 1089 |
+
assert (
|
| 1090 |
+
x.shape[0] % num_frames == 0
|
| 1091 |
+
), "[UNet] input batch size must be dividable by num_frames!"
|
| 1092 |
+
assert (y is not None) == (
|
| 1093 |
+
self.num_classes is not None
|
| 1094 |
+
), "must specify y if and only if the model is class-conditional"
|
| 1095 |
+
|
| 1096 |
+
hs = []
|
| 1097 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # shape: torch.Size([B, 320]) mean: 0.18, std: 0.68, min: -1.00, max: 1.00
|
| 1098 |
+
emb = self.time_embed(t_emb) # shape: torch.Size([B, 1280]) mean: 0.12, std: 0.57, min: -5.73, max: 6.51
|
| 1099 |
+
|
| 1100 |
+
if self.num_classes is not None:
|
| 1101 |
+
assert y.shape[0] == x.shape[0]
|
| 1102 |
+
emb = emb + self.label_emb(y)
|
| 1103 |
+
|
| 1104 |
+
# Add camera embeddings
|
| 1105 |
+
if camera is not None:
|
| 1106 |
+
assert camera.shape[0] == emb.shape[0]
|
| 1107 |
+
# camera embed: shape: torch.Size([B, 1280]) mean: -0.02, std: 0.27, min: -7.23, max: 2.04
|
| 1108 |
+
emb = emb + self.camera_embed(camera)
|
| 1109 |
+
ip = kwargs.get("ip", None)
|
| 1110 |
+
ip_img = kwargs.get("ip_img", None)
|
| 1111 |
+
pixel_images = kwargs.get("pixel_images", None)
|
| 1112 |
+
|
| 1113 |
+
if ip_img is not None:
|
| 1114 |
+
x[(num_frames-1)::num_frames, :, :, :] = ip_img
|
| 1115 |
+
|
| 1116 |
+
x = torch.cat((x, pixel_images), dim=1)
|
| 1117 |
+
|
| 1118 |
+
if ip is not None:
|
| 1119 |
+
ip_emb = self.image_embed(ip) # shape: torch.Size([B, 16, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 1120 |
+
context = torch.cat((context, ip_emb), 1) # shape: torch.Size([B, 93, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
|
| 1121 |
+
|
| 1122 |
+
h = x.type(self.dtype)
|
| 1123 |
+
for module in self.input_blocks:
|
| 1124 |
+
h = module(h, emb, context, num_frames=num_frames)
|
| 1125 |
+
hs.append(h)
|
| 1126 |
+
h = self.middle_block(h, emb, context, num_frames=num_frames)
|
| 1127 |
+
for module in self.output_blocks:
|
| 1128 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 1129 |
+
h = module(h, emb, context, num_frames=num_frames)
|
| 1130 |
+
h = h.type(x.dtype) # shape: torch.Size([10, 320, 32, 32]) mean: -0.67, std: 3.96, min: -42.74, max: 25.58
|
| 1131 |
+
if self.predict_codebook_ids: # False
|
| 1132 |
+
return self.id_predictor(h)
|
| 1133 |
+
else:
|
| 1134 |
+
return self.out(h) # shape: torch.Size([10, 4, 32, 32]) mean: -0.00, std: 0.91, min: -3.65, max: 3.93
|
| 1135 |
|