Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
b657fae
1
Parent(s):
d2eaab7
add code for building model and tokenizer
Browse files
model.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import mlflow
|
| 2 |
+
import torch
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 5 |
+
|
| 6 |
+
class InferenceBuilder:
|
| 7 |
+
|
| 8 |
+
def __init__(self):
|
| 9 |
+
# Load the necessary configuration from yaml
|
| 10 |
+
self.model_config = mlflow.models.ModelConfig(development_config="model_config.yaml")
|
| 11 |
+
self.cybersolve_config = self.model_config.get("cybersolve_config")
|
| 12 |
+
|
| 13 |
+
def load_tokenizer(self):
|
| 14 |
+
tokenizer_name = self.cybersolve_config.get("tokenizer_name")
|
| 15 |
+
# make sure we cache this so that it doesnt redownload each time
|
| 16 |
+
# cannot directly use @st.cache_resource on a method (function within a class) that has a self argument
|
| 17 |
+
@st.cache_resource # https://docs.streamlit.io/develop/concepts/architecture/caching
|
| 18 |
+
def load_and_cache_tokenizer(tokenizer_name):
|
| 19 |
+
tokenizer = T5Tokenizer.from_pretrained(tokenizer_name) # CyberSolve uses the same tokenizer as the base FLAN-T5 model
|
| 20 |
+
return tokenizer
|
| 21 |
+
|
| 22 |
+
return load_and_cache_tokenizer(tokenizer_name)
|
| 23 |
+
|
| 24 |
+
def load_model(self):
|
| 25 |
+
model_name = self.cybersolve_config.get("model_name")
|
| 26 |
+
# make sure we cache this so that it doesnt redownload each time
|
| 27 |
+
# cannot directly use @st.cache_resource on a method (function within a class) that has a self argument
|
| 28 |
+
@st.cache_resource # https://docs.streamlit.io/develop/concepts/architecture/caching
|
| 29 |
+
def load_and_cache_model(model_name):
|
| 30 |
+
# model = T5ForConditionalGeneration.from_pretrained(model_name).to("cuda") # put the model on our Space's GPU
|
| 31 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name) # move to GPU eventually
|
| 32 |
+
return model
|
| 33 |
+
|
| 34 |
+
return load_and_cache_model(model_name)
|