File size: 14,313 Bytes
d43b410
10a95c9
f45b463
8bb66b9
f45b463
31a5031
a2a0721
d43b410
0e29746
31a5031
 
 
a2a0721
d43b410
 
0e29746
31a5031
a2a0721
f45b463
 
 
 
 
d43b410
f45b463
 
 
 
 
31a5031
d43b410
a2a0721
0219321
31a5031
fb9ed3a
31a5031
 
1543f99
4abddf8
 
a62b777
f45b463
 
 
 
 
 
 
 
d43b410
f45b463
 
 
 
 
 
d43b410
f45b463
25b1dfe
 
a2a0721
d43b410
4abddf8
6e06674
d43b410
f45b463
 
 
 
 
 
 
 
31a5031
a1495e2
31a5031
f45b463
 
 
 
 
 
 
 
 
 
 
4264c5b
 
 
 
 
f45b463
 
 
31a5031
f45b463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a5031
 
 
 
 
 
 
 
 
 
 
 
 
ee63f07
 
31a5031
 
 
ee63f07
7798405
f45b463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a5031
 
 
 
 
f45b463
 
 
 
 
 
 
 
 
 
 
 
 
31a5031
 
f45b463
 
 
 
 
 
 
 
 
 
31a5031
 
 
f45b463
 
31a5031
 
f45b463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8958054
f45b463
 
 
 
 
 
 
6467922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45b463
 
 
 
 
3c6915f
f45b463
 
8958054
f45b463
 
154dfaa
 
 
4264c5b
 
 
 
f45b463
af3c6e2
f45b463
 
1acff41
7e2c9a0
f45b463
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import time
import threading
import streamlit as st
from itertools import tee
from chain import ChainBuilder

DATABRICKS_HOST = os.environ.get("DATABRICKS_HOST")
DATABRICKS_TOKEN = os.environ.get("DATABRICKS_TOKEN")
# remove these secrets from the container
# VS_ENDPOINT_NAME = os.environ.get("VS_ENDPOINT_NAME")
# VS_INDEX_NAME = os.environ.get("VS_INDEX_NAME")

if DATABRICKS_HOST is None:
    raise ValueError("DATABRICKS_HOST environment variable must be set")
if DATABRICKS_TOKEN is None:
    raise ValueError("DATABRICKS_TOKEN environment variable must be set")

MODEL_AVATAR_URL= "./VU.jpeg"

# MSG_MAX_TURNS_EXCEEDED = f"Sorry! The Vanderbilt AI assistant playground is limited to {MAX_CHAT_TURNS} turns. Click the 'Clear Chat' button or refresh the page to start a new conversation."
# MSG_CLIPPED_AT_MAX_OUT_TOKENS = "Reached maximum output tokens for DBRX Playground"

EXAMPLE_PROMPTS = [
    "How is a data lake used at Vanderbilt University Medical Center?",
    "In a table, what are some of the greatest hurdles to healthcare in the United States?",
    "What does EDW stand for in the context of Vanderbilt University Medical Center?",
    "Code a sql statement that can query a database named 'VUMC'.",
    "Write a short story about a country concert in Nashville, Tennessee.",
    "Tell me about maximum out-of-pocket costs in healthcare.",
]

TITLE = "Vanderbilt AI Assistant"
DESCRIPTION= """Welcome to the first generation Vanderbilt AI assistant! \n 
This AI assistant is built atop the Databricks DBRX large language model 
and is augmented with additional organization-specific knowledge. Particularly, it has been preliminarily augmented with knowledge of Vanderbilt University Medical Center
terms like **Data Lake**, **EDW**, **HCERA**, and **thousands more**. (Ask the assistant if you don't know what any of these terms mean!) **Disclaimer**: The model has **no access to PHI**. \n
Try querying the model with any of the example prompts below for a simple introduction to both Vanderbilt-specific and general knowledge queries. The purpose of this 
model is to allow VUMC employees access to an intelligent assistant that improves and expedites VUMC work. \n
Feedback and ideas are very welcome! Please provide any feedback, ideas, or issues to the email: **[email protected]**. 
We hope to gradually improve this AI assistant to create a large-scale, all-inclusive tool to compliment the work of all VUMC staff; your comments are invaluable in this process."""

GENERAL_ERROR_MSG = "An error occurred. Please refresh the page to start a new conversation."

# @st.cache_resource
# def get_global_semaphore():
#     return threading.BoundedSemaphore(QUEUE_SIZE)
# global_semaphore = get_global_semaphore()

st.set_page_config(layout="wide")

# # To prevent streaming to fast, chunk the output into TOKEN_CHUNK_SIZE chunks
TOKEN_CHUNK_SIZE = 1
# if TOKEN_CHUNK_SIZE_ENV is not None:
#     TOKEN_CHUNK_SIZE = int(TOKEN_CHUNK_SIZE_ENV)

st.title(TITLE)
# st.image("sunrise.jpg", caption="Sunrise by the mountains") # add a Vanderbilt related picture to the head of our Space!
st.markdown(DESCRIPTION)
st.markdown("\n")

# use this to format later
with open("./style.css") as css:
    st.markdown( f'<style>{css.read()}</style>' , unsafe_allow_html= True)

if "messages" not in st.session_state:
    st.session_state["messages"] = []

def clear_chat_history():
    st.session_state["messages"] = []

st.button('Clear Chat', on_click=clear_chat_history)

# build our chain outside the working body so that its only instantiated once - simply pass it the chat history for chat completion
chain = ChainBuilder().build_chain()

def last_role_is_user():
    return len(st.session_state["messages"]) > 0 and st.session_state["messages"][-1]["role"] == "user"

def text_stream(stream):
    for chunk in stream:
        if chunk["content"] is not None:
            yield chunk["content"]

def get_stream_warning_error(stream):
    error = None
    warning = None
    for chunk in stream:
        if chunk["error"] is not None:
            error = chunk["error"]
        if chunk["warning"] is not None:
            warning = chunk["warning"]
    return warning, error

# @retry(wait=wait_random_exponential(min=0.5, max=2), stop=stop_after_attempt(3))
def chain_call(history):
    # *** original code for instantiating the DBRX model through the OpenAI client *** skip this and introduce our chain eventually
    # extra_body = {}
    # if SAFETY_FILTER:
    #     extra_body["enable_safety_filter"] = SAFETY_FILTER
    # chat_completion = client.chat.completions.create(
    #     messages=[
    #         {"role": m["role"], "content": m["content"]}
    #         for m in history
    #     ],
    #     model="databricks-dbrx-instruct",
    #     stream=True,
    #     max_tokens=MAX_TOKENS,
    #     temperature=0.7,
    #     extra_body= extra_body
    # )

    # *** can we stream the chain's response by incorporating the above OpenAI streaming functionality?
    # *** Look back at the predict_stream function and see if we can incorporate that!
    # *** looks like we want to use either chain.stream() or chain.astream()
    # test first with invoke

    input_example = {'messages': 
                     [{'content': 'What does EDW stand for?', 'role': 'user'}, 
                      {'content': 'Enterprise Data Warehouse.', 'role': 'assistant'}, 
                      {'content': 'Thank you. What is the data lake?', 'role': 'user'}, 
                      {'content': 'A data lake is a centralized repository of structured and unstructured data. It allows data to be stored in its native state, without the need for transformations, so that it can be consumed by other users later. It is not just a term for storage, but also covers functionalities required for a platform, including data analysis, machine learning, cataloging and data movement.', 'role': 'assistant'}, 
                      {'content': 'Can you tell me more about how they are used?', 'role': 'user'}, 
                      {'content': 'At Vanderbilt University Medical Center, a data lake is used as a centralized repository for storing and managing large amounts of data in its native format. This allows for the data to be easily accessed and analyzed by different teams and business units within the organization. The data lake also provides functionalities such as data analysis, machine learning, cataloging and data movement, making it a versatile tool for handling diverse data sets.\n\nAn Enterprise Data Warehouse (EDW) is used for executing analytic queries on structured data. It is optimized for this purpose, with data being stored in a way that allows for efficient querying and analysis. This makes it a useful tool for teams that need to perform complex analyses on large data sets.\n\nA data mart is a specific organizational structure or pattern used in the context of data warehouses. It is a layer that has specific subdivisions for each business unit or team, such as finance, marketing, and product. This allows users to consume data in a format that meets their specific needs.\n\nA data lakehouse is a term used to describe approaches that attempt to combine the data structure and management features of a data warehouse with the low cost of storage of a data lake. This includes a structured transactional layer, which allows for efficient querying and analysis of data. This approach aims to provide the benefits of both data lakes and data warehouses in a single platform.', 'role': 'assistant'}, 
                      {'content': 'Nice answer. Can you tell me what the HCERA is?', 'role': 'user'}]}
    
    input = {'messages': [{"role": m["role"], "content": m["content"]} for m in history]}

    # search_result = vector_store.similarity_search(query=st.session_state["messages"][-1]["content"], k=5)
    # chat_completion = search_result # TODO update this after we implement our chain
    # chat_completion = chain.invoke(input_example) # *** TODO here we will pass only the chat history, the chain handles the system prompt
    chat_completion = chain.stream(input)
    return chat_completion

def write_response():
    stream = chat_completion(st.session_state["messages"])
    content_stream, error_stream = tee(stream)
    response = st.write_stream(text_stream(content_stream))
    stream_warning, stream_error = get_stream_warning_error(error_stream)
    if stream_warning is not None:
        st.warning(stream_warning,icon="⚠️")
    if stream_error is not None:
        st.error(stream_error,icon="🚨")
    # if there was an error, a list will be returned instead of a string: https://docs.streamlit.io/library/api-reference/write-magic/st.write_stream
    if isinstance(response, list):
        response = None 
    return response, stream_warning, stream_error

def chat_completion(messages):
    # history_dbrx_format = [
    #     {"role": "system", "content": SYSTEM_PROMPT} # no longer need this because the chain handles all of this for us
    # ]
    
    # history_dbrx_format = history_dbrx_format + messages
    # if (len(history_dbrx_format)-1)//2 >= MAX_CHAT_TURNS:
    #     yield {"content": None, "error": MSG_MAX_TURNS_EXCEEDED, "warning": None}
    #     return

    chat_completion = None
    error = None
    # *** original code for querying DBRX through the OpenAI cleint for chat completion
    # wait to be in queue
    # with global_semaphore:
    #     try: 
    #         chat_completion = chat_api_call(history_dbrx_format)
    #     except Exception as e:
    #         error = e    
    # chat_completion = chain_call(history_dbrx_format)
    chat_completion = chain_call(messages) # simply pass the old messages, need not worry about the system prompt
    if error is not None:
        yield {"content": None, "error": GENERAL_ERROR_MSG, "warning": None}
        print(error)
        return
    
    max_token_warning = None
    partial_message = ""
    chunk_counter = 0
    for chunk in chat_completion:
        # if chunk.choices[0].delta.content is not None:
        # TODO *** we need to refactor this logic to match what happens with the response from our chain - it should be strings or an iterator of strings
        # if chunk.page_content is not None:
        if chunk is not None:
            chunk_counter += 1
            # partial_message += chunk.choices[0].delta.content
            # partial_message += f"* {chunk.page_content} [{chunk.metadata}]"
            partial_message += chunk
            if chunk_counter % TOKEN_CHUNK_SIZE == 0:
                chunk_counter = 0
                yield {"content": partial_message, "error": None, "warning": None}
                partial_message = ""
        # if chunk.choices[0].finish_reason == "length":
        #     max_token_warning = MSG_CLIPPED_AT_MAX_OUT_TOKENS

    yield {"content": partial_message, "error": None, "warning": max_token_warning}

# if assistant is the last message, we need to prompt the user
# if user is the last message, we need to retry the assistant.
def handle_user_input(user_input):
    with history:
        response, stream_warning, stream_error = [None, None, None]
        if last_role_is_user():
            # retry the assistant if the user tries to send a new message
            with st.chat_message("assistant", avatar=MODEL_AVATAR_URL):
                response, stream_warning, stream_error = write_response()
        else:
            st.session_state["messages"].append({"role": "user", "content": user_input, "warning": None, "error": None})
            with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
                st.markdown(user_input)
            stream = chat_completion(st.session_state["messages"])
            with st.chat_message("assistant", avatar=MODEL_AVATAR_URL):
                response, stream_warning, stream_error = write_response()
        
        st.session_state["messages"].append({"role": "assistant", "content": response, "warning": stream_warning, "error": stream_error})

def feedback():
    with st.container():
        st.title("Feedback Interface")
        sentiment_mapping = [":material/thumb_down:", ":material/thumb_up:"]
        rating = st.feedback()
        feedback = st.text_input(f"Please detail your rationale for choosing {sentiment_mapping[rating]}: ", "")
        # feedback = ""
        # review = {}
        # if rating is not None:
        #     # st.markdown(f"You selected: {sentiment_mapping[rating]}")
        #     # rating = st.radio("Rate your experience:", ["πŸ‘", "Neutral", "πŸ‘Ž"])
        review = {"rating": {rating}, "feedback": {feedback}}

        st.markdown(review)
        time.sleep(5)
        #     # Save the feedback data
        # if st.button("Submit"):
        #     with open("feedback.json", "a") as f:
        #         f.write()
        #     st.write("Thank you for your feedback!")

main = st.container()
with main:
    history = st.container(height=400)
    with history:
        for message in st.session_state["messages"]:
            avatar = "πŸ§‘β€πŸ’»"
            if message["role"] == "assistant":
                avatar = MODEL_AVATAR_URL
            with st.chat_message(message["role"], avatar=avatar):
                if message["content"] is not None:
                    st.markdown(message["content"])
                    # receive feedback on AI outputs if the user feels inclined to give it
                    # rating = st.radio("Rate your experience:", ["Very satisfied", "Somewhat satisfied", "Neutral", "Somewhat dissatisfied", "Very dissatisfied"])
                    # st.button("Provide Feedback", on_click=feedback)
                if message["error"] is not None:
                    st.error(message["error"],icon="🚨")
                if message["warning"] is not None:
                    st.warning(message["warning"],icon="⚠️")

    if prompt := st.chat_input("Type a message!", max_chars=5000):
        handle_user_input(prompt)
    st.markdown("\n") #add some space for iphone users
    with st.container():
        st.button('Give Feedback on Last Response', on_click=feedback)

with st.sidebar:
    with st.container():
        st.title("Examples")
        for prompt in EXAMPLE_PROMPTS:
            st.button(prompt, args=(prompt,), on_click=handle_user_input)