Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,6 @@ import time
|
|
13 |
import base64
|
14 |
import io
|
15 |
import streamlit.components.v1 as components
|
16 |
-
from concurrent.futures import ThreadPoolExecutor
|
17 |
-
from typing import Dict, Tuple, List, Any, Optional, Union
|
18 |
-
import numpy as np
|
19 |
|
20 |
# Suppress warnings for a clean console
|
21 |
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
@@ -23,14 +20,6 @@ logging.getLogger("transformers").setLevel(logging.CRITICAL)
|
|
23 |
warnings.filterwarnings("ignore")
|
24 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
25 |
|
26 |
-
# Check if NumPy is available
|
27 |
-
try:
|
28 |
-
test_array = np.array([1, 2, 3])
|
29 |
-
torch.from_numpy(test_array)
|
30 |
-
except Exception as e:
|
31 |
-
st.error(f"NumPy is not available or incompatible with PyTorch: {str(e)}. Ensure 'numpy' is in requirements.txt and reinstall dependencies.")
|
32 |
-
st.stop()
|
33 |
-
|
34 |
# Check if CUDA is available, otherwise use CPU
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
print(f"Using device: {device}")
|
@@ -40,26 +29,23 @@ st.set_page_config(layout="wide", page_title="Voice Based Sentiment Analysis")
|
|
40 |
|
41 |
# Interface design
|
42 |
st.title("π Voice Based Sentiment Analysis")
|
43 |
-
st.write("Detect emotions, sentiment, and sarcasm from your voice with
|
44 |
|
45 |
-
# Emotion Detection Function
|
46 |
@st.cache_resource
|
47 |
def get_emotion_classifier():
|
48 |
try:
|
49 |
-
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion",
|
50 |
-
use_fast=True,
|
51 |
-
model_max_length=512)
|
52 |
model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
53 |
model = model.to(device)
|
54 |
-
|
55 |
-
|
56 |
classifier = pipeline("text-classification",
|
57 |
model=model,
|
58 |
tokenizer=tokenizer,
|
59 |
-
|
60 |
device=0 if torch.cuda.is_available() else -1)
|
61 |
|
62 |
-
#
|
63 |
test_result = classifier("I am happy today")
|
64 |
print(f"Emotion classifier test: {test_result}")
|
65 |
|
@@ -69,79 +55,98 @@ def get_emotion_classifier():
|
|
69 |
st.error(f"Failed to load emotion model. Please check logs.")
|
70 |
return None
|
71 |
|
72 |
-
|
73 |
-
@st.cache_data(ttl=600)
|
74 |
-
def perform_emotion_detection(text: str) -> Tuple[Dict[str, float], str, Dict[str, str], str]:
|
75 |
try:
|
76 |
if not text or len(text.strip()) < 3:
|
77 |
-
return {}, "neutral", {
|
78 |
|
79 |
emotion_classifier = get_emotion_classifier()
|
80 |
if emotion_classifier is None:
|
81 |
st.error("Emotion classifier not available.")
|
82 |
-
return {}, "neutral", {
|
83 |
|
84 |
-
# Process text directly (skip chunking for speed)
|
85 |
emotion_results = emotion_classifier(text)
|
|
|
|
|
|
|
|
|
86 |
|
|
|
|
|
87 |
emotion_map = {
|
88 |
"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨",
|
89 |
-
"sadness": "π", "surprise": "π²"
|
90 |
}
|
91 |
-
|
92 |
positive_emotions = ["joy"]
|
93 |
negative_emotions = ["anger", "disgust", "fear", "sadness"]
|
94 |
-
neutral_emotions = ["surprise"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
|
100 |
-
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.01} # Lowered from 0.05
|
101 |
|
102 |
if not filtered_emotions:
|
103 |
filtered_emotions = emotions_dict
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
if len(sorted_emotions) > 1 and sorted_emotions[1][1] > 0.8 * sorted_emotions[0][1]:
|
108 |
-
top_emotion = "MIXED"
|
109 |
-
else:
|
110 |
-
top_emotion = sorted_emotions[0][0]
|
111 |
|
112 |
-
|
113 |
-
if top_emotion == "MIXED":
|
114 |
-
sentiment = "MIXED"
|
115 |
-
elif top_emotion in positive_emotions:
|
116 |
sentiment = "POSITIVE"
|
117 |
elif top_emotion in negative_emotions:
|
118 |
sentiment = "NEGATIVE"
|
119 |
else:
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
return emotions_dict, top_emotion, emotion_map, sentiment
|
123 |
except Exception as e:
|
124 |
st.error(f"Emotion detection failed: {str(e)}")
|
125 |
print(f"Exception in emotion detection: {str(e)}")
|
126 |
-
return {}, "neutral", {
|
127 |
|
128 |
# Sarcasm Detection Function
|
129 |
@st.cache_resource
|
130 |
def get_sarcasm_classifier():
|
131 |
try:
|
132 |
-
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony",
|
133 |
-
use_fast=True,
|
134 |
-
model_max_length=512)
|
135 |
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
|
136 |
model = model.to(device)
|
137 |
-
model
|
138 |
-
|
139 |
-
classifier = pipeline("text-classification",
|
140 |
-
model=model,
|
141 |
-
tokenizer=tokenizer,
|
142 |
device=0 if torch.cuda.is_available() else -1)
|
143 |
|
144 |
-
#
|
145 |
test_result = classifier("This is totally amazing")
|
146 |
print(f"Sarcasm classifier test: {test_result}")
|
147 |
|
@@ -151,8 +156,7 @@ def get_sarcasm_classifier():
|
|
151 |
st.error(f"Failed to load sarcasm model. Please check logs.")
|
152 |
return None
|
153 |
|
154 |
-
|
155 |
-
def perform_sarcasm_detection(text: str) -> Tuple[bool, float]:
|
156 |
try:
|
157 |
if not text or len(text.strip()) < 3:
|
158 |
return False, 0.0
|
@@ -170,82 +174,84 @@ def perform_sarcasm_detection(text: str) -> Tuple[bool, float]:
|
|
170 |
st.error(f"Sarcasm detection failed: {str(e)}")
|
171 |
return False, 0.0
|
172 |
|
173 |
-
# Validate audio quality
|
174 |
-
def validate_audio(audio_path
|
175 |
try:
|
176 |
sound = AudioSegment.from_file(audio_path)
|
177 |
-
if
|
178 |
-
st.warning("Audio is
|
|
|
|
|
|
|
179 |
return False
|
180 |
return True
|
181 |
-
except
|
182 |
-
st.error(
|
183 |
return False
|
184 |
|
185 |
# Speech Recognition with Whisper
|
186 |
@st.cache_resource
|
187 |
def load_whisper_model():
|
188 |
try:
|
189 |
-
model = whisper.load_model("
|
190 |
return model
|
191 |
except Exception as e:
|
192 |
print(f"Error loading Whisper model: {str(e)}")
|
193 |
st.error(f"Failed to load Whisper model. Please check logs.")
|
194 |
return None
|
195 |
|
196 |
-
|
197 |
-
def transcribe_audio(audio_path: str) -> str:
|
198 |
try:
|
|
|
199 |
sound = AudioSegment.from_file(audio_path)
|
|
|
|
|
|
|
200 |
# Convert to WAV format (16kHz, mono) for Whisper
|
201 |
-
temp_wav_path = os.path.join(tempfile.gettempdir(),
|
202 |
-
sound = sound.set_frame_rate(
|
|
|
203 |
sound.export(temp_wav_path, format="wav")
|
204 |
|
205 |
-
# Load model
|
206 |
model = load_whisper_model()
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
# Transcribe with optimized settings
|
211 |
-
result = model.transcribe(
|
212 |
-
temp_wav_path,
|
213 |
-
language="en",
|
214 |
-
task="transcribe",
|
215 |
-
fp16=torch.cuda.is_available(),
|
216 |
-
beam_size=3 # Reduced for speed
|
217 |
-
)
|
218 |
-
|
219 |
main_text = result["text"].strip()
|
220 |
|
221 |
# Clean up
|
222 |
if os.path.exists(temp_wav_path):
|
223 |
os.remove(temp_wav_path)
|
224 |
|
|
|
|
|
|
|
225 |
return main_text
|
226 |
except Exception as e:
|
227 |
st.error(f"Transcription failed: {str(e)}")
|
228 |
-
return ""
|
229 |
|
230 |
-
#
|
231 |
-
def process_uploaded_audio(audio_file)
|
232 |
if not audio_file:
|
233 |
return None
|
234 |
|
235 |
try:
|
236 |
temp_dir = tempfile.gettempdir()
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
240 |
return None
|
241 |
-
|
242 |
temp_file_path = os.path.join(temp_dir, f"uploaded_audio_{int(time.time())}.{ext}")
|
|
|
243 |
with open(temp_file_path, "wb") as f:
|
244 |
f.write(audio_file.getvalue())
|
245 |
|
246 |
if not validate_audio(temp_file_path):
|
247 |
-
|
248 |
-
|
249 |
return temp_file_path
|
250 |
except Exception as e:
|
251 |
st.error(f"Error processing uploaded audio: {str(e)}")
|
@@ -254,95 +260,90 @@ def process_uploaded_audio(audio_file) -> Optional[str]:
|
|
254 |
# Show model information
|
255 |
def show_model_info():
|
256 |
st.sidebar.header("π§ About the Models")
|
|
|
257 |
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
|
258 |
|
259 |
with model_tabs[0]:
|
260 |
st.markdown("""
|
261 |
*Emotion Model*: distilbert-base-uncased-emotion
|
262 |
-
-
|
263 |
- Architecture: DistilBERT base
|
|
|
264 |
[π Model Hub](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
|
265 |
""")
|
266 |
|
267 |
with model_tabs[1]:
|
268 |
st.markdown("""
|
269 |
*Sarcasm Model*: cardiffnlp/twitter-roberta-base-irony
|
270 |
-
- Trained on Twitter irony dataset
|
271 |
- Architecture: RoBERTa base
|
|
|
272 |
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
|
273 |
""")
|
274 |
|
275 |
with model_tabs[2]:
|
276 |
st.markdown("""
|
277 |
-
*Speech Recognition*: OpenAI Whisper (
|
278 |
-
-
|
279 |
-
-
|
280 |
-
|
|
|
|
|
281 |
[π Model Details](https://github.com/openai/whisper)
|
282 |
""")
|
283 |
|
284 |
-
# Custom audio recorder
|
285 |
def custom_audio_recorder():
|
286 |
-
st.warning("Browser-based recording requires microphone access. If recording fails, try uploading an audio file.")
|
287 |
audio_recorder_html = """
|
288 |
<script>
|
289 |
var audioRecorder = {
|
290 |
audioBlobs: [],
|
291 |
mediaRecorder: null,
|
292 |
streamBeingCaptured: null,
|
293 |
-
isRecording: false,
|
294 |
-
|
295 |
start: function() {
|
296 |
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
}
|
300 |
-
return navigator.mediaDevices.getUserMedia({
|
301 |
-
audio: {
|
302 |
-
echoCancellation: true,
|
303 |
-
noiseSuppression: true,
|
304 |
-
autoGainControl: true
|
305 |
-
}
|
306 |
-
})
|
307 |
-
.then(stream => {
|
308 |
-
audioRecorder.streamBeingCaptured = stream;
|
309 |
-
audioRecorder.mediaRecorder = new MediaRecorder(stream, {
|
310 |
-
mimeType: 'audio/webm;codecs=opus',
|
311 |
-
audioBitsPerSecond: 128000
|
312 |
-
});
|
313 |
-
audioRecorder.audioBlobs = [];
|
314 |
-
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
|
315 |
-
audioRecorder.audioBlobs.push(event.data);
|
316 |
-
});
|
317 |
-
audioRecorder.mediaRecorder.start(100);
|
318 |
-
audioRecorder.isRecording = true;
|
319 |
-
document.getElementById('status-message').textContent = "Recording...";
|
320 |
-
});
|
321 |
},
|
322 |
-
|
323 |
stop: function() {
|
324 |
return new Promise(resolve => {
|
325 |
let mimeType = audioRecorder.mediaRecorder.mimeType;
|
326 |
audioRecorder.mediaRecorder.addEventListener("stop", () => {
|
327 |
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
|
328 |
resolve(audioBlob);
|
329 |
-
audioRecorder.isRecording = false;
|
330 |
-
document.getElementById('status-message').textContent = "Recording stopped";
|
331 |
});
|
332 |
audioRecorder.mediaRecorder.stop();
|
333 |
-
audioRecorder.
|
334 |
-
audioRecorder.
|
335 |
-
audioRecorder.streamBeingCaptured = null;
|
336 |
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
}
|
338 |
}
|
339 |
-
|
340 |
var isRecording = false;
|
341 |
-
|
|
|
|
|
342 |
function toggleRecording() {
|
343 |
-
var recordButton = document.getElementById('record-button');
|
344 |
-
var statusMessage = document.getElementById('status-message');
|
345 |
-
|
346 |
if (!isRecording) {
|
347 |
audioRecorder.start()
|
348 |
.then(() => {
|
@@ -351,286 +352,238 @@ def custom_audio_recorder():
|
|
351 |
recordButton.classList.add('recording');
|
352 |
})
|
353 |
.catch(error => {
|
354 |
-
|
355 |
});
|
356 |
} else {
|
357 |
audioRecorder.stop()
|
358 |
.then(audioBlob => {
|
359 |
const audioUrl = URL.createObjectURL(audioBlob);
|
360 |
-
var audioElement = document.getElementById('audio-playback');
|
361 |
audioElement.src = audioUrl;
|
362 |
-
audioElement.style.display = 'block';
|
363 |
-
|
364 |
const reader = new FileReader();
|
365 |
reader.readAsDataURL(audioBlob);
|
366 |
reader.onloadend = function() {
|
367 |
const base64data = reader.result;
|
368 |
-
var audioData = document.getElementById('audio-data');
|
369 |
audioData.value = base64data;
|
370 |
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
|
371 |
window.parent.postMessage(streamlitMessage, "*");
|
372 |
}
|
373 |
-
|
374 |
isRecording = false;
|
375 |
recordButton.textContent = 'Start Recording';
|
376 |
recordButton.classList.remove('recording');
|
377 |
});
|
378 |
}
|
379 |
}
|
380 |
-
|
381 |
document.addEventListener('DOMContentLoaded', function() {
|
382 |
-
|
|
|
|
|
383 |
recordButton.addEventListener('click', toggleRecording);
|
384 |
});
|
385 |
</script>
|
386 |
-
|
387 |
<div class="audio-recorder-container">
|
388 |
<button id="record-button" class="record-button">Start Recording</button>
|
389 |
-
<
|
390 |
-
<audio id="audio-playback" controls style="display:none; margin-top:10px; width:100%;"></audio>
|
391 |
<input type="hidden" id="audio-data" name="audio-data">
|
392 |
</div>
|
393 |
-
|
394 |
<style>
|
395 |
.audio-recorder-container {
|
396 |
display: flex;
|
397 |
flex-direction: column;
|
398 |
align-items: center;
|
399 |
-
padding:
|
400 |
-
border-radius: 8px;
|
401 |
-
background-color: #f7f7f7;
|
402 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
403 |
}
|
404 |
-
|
405 |
.record-button {
|
406 |
background-color: #f63366;
|
407 |
color: white;
|
408 |
border: none;
|
409 |
-
padding:
|
410 |
-
border-radius:
|
411 |
cursor: pointer;
|
412 |
font-size: 16px;
|
413 |
-
font-weight: bold;
|
414 |
-
transition: all 0.3s ease;
|
415 |
-
}
|
416 |
-
|
417 |
-
.record-button:hover {
|
418 |
-
background-color: #e62958;
|
419 |
-
transform: translateY(-2px);
|
420 |
}
|
421 |
-
|
422 |
.record-button.recording {
|
423 |
background-color: #ff0000;
|
424 |
animation: pulse 1.5s infinite;
|
425 |
}
|
426 |
-
|
427 |
-
.status-message {
|
428 |
-
margin-top: 10px;
|
429 |
-
font-size: 14px;
|
430 |
-
color: #666;
|
431 |
-
}
|
432 |
-
|
433 |
@keyframes pulse {
|
434 |
-
0% { opacity: 1;
|
435 |
-
50% { opacity: 0.
|
436 |
-
100% { opacity: 1;
|
437 |
}
|
438 |
</style>
|
439 |
"""
|
440 |
|
441 |
return components.html(audio_recorder_html, height=150)
|
442 |
|
443 |
-
#
|
444 |
-
def display_analysis_results(transcribed_text
|
445 |
st.session_state.debug_info = st.session_state.get('debug_info', [])
|
446 |
-
st.session_state.debug_info.append(f"
|
447 |
-
st.session_state.debug_info.
|
448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
st.header("Transcribed Text")
|
451 |
-
st.text_area("Text", transcribed_text, height=
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
confidence_score = min(0.98, max(0.75, 0.75 + (word_count / 100) * 0.2))
|
456 |
-
st.caption(f"Estimated transcription confidence: {confidence_score:.2f}")
|
457 |
|
458 |
st.header("Analysis Results")
|
459 |
col1, col2 = st.columns([1, 2])
|
460 |
|
461 |
with col1:
|
462 |
st.subheader("Sentiment")
|
463 |
-
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "
|
464 |
-
st.markdown(f"
|
|
|
465 |
|
466 |
st.subheader("Sarcasm")
|
467 |
sarcasm_icon = "π" if is_sarcastic else "π"
|
468 |
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
|
469 |
-
st.markdown(f"
|
|
|
470 |
|
471 |
with col2:
|
472 |
st.subheader("Emotions")
|
473 |
if emotions_dict:
|
474 |
-
st.markdown(
|
475 |
-
|
476 |
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14,
|
486 |
-
margin=dict(l=20, r=20, t=40, b=20), bargap=0.3)
|
487 |
-
st.plotly_chart(fig, use_container_width=True)
|
488 |
-
else:
|
489 |
-
st.write("No significant emotions detected.")
|
490 |
else:
|
491 |
st.write("No emotions detected.")
|
492 |
|
493 |
-
# Debug expander
|
494 |
with st.expander("Debug Information", expanded=False):
|
495 |
-
st.write("Debugging information:")
|
496 |
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
|
497 |
st.text(f"{i + 1}. {debug_line}")
|
498 |
if emotions_dict:
|
499 |
st.write("Raw emotion scores:")
|
500 |
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
|
501 |
-
if score > 0.01:
|
502 |
st.text(f"{emotion}: {score:.4f}")
|
503 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
# Process base64 audio data
|
505 |
def process_base64_audio(base64_data):
|
506 |
try:
|
507 |
-
if not base64_data or not isinstance(base64_data, str) or not base64_data.startswith('data:'):
|
508 |
-
st.error("Invalid audio data received")
|
509 |
-
return None
|
510 |
-
|
511 |
base64_binary = base64_data.split(',')[1]
|
512 |
binary_data = base64.b64decode(base64_binary)
|
513 |
-
|
|
|
|
|
514 |
|
515 |
with open(temp_file_path, "wb") as f:
|
516 |
f.write(binary_data)
|
517 |
|
518 |
if not validate_audio(temp_file_path):
|
519 |
-
|
520 |
-
|
521 |
return temp_file_path
|
522 |
except Exception as e:
|
523 |
st.error(f"Error processing audio data: {str(e)}")
|
524 |
return None
|
525 |
|
526 |
-
# Preload models in background
|
527 |
-
def preload_models():
|
528 |
-
threading.Thread(target=load_whisper_model).start()
|
529 |
-
threading.Thread(target=get_emotion_classifier).start()
|
530 |
-
threading.Thread(target=get_sarcasm_classifier).start()
|
531 |
-
|
532 |
# Main App Logic
|
533 |
def main():
|
534 |
if 'debug_info' not in st.session_state:
|
535 |
st.session_state.debug_info = []
|
536 |
-
if 'models_loaded' not in st.session_state:
|
537 |
-
st.session_state.models_loaded = False
|
538 |
-
|
539 |
-
if not st.session_state.models_loaded:
|
540 |
-
preload_models()
|
541 |
-
st.session_state.models_loaded = True
|
542 |
|
543 |
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
|
544 |
|
545 |
with tab1:
|
546 |
st.header("Upload an Audio File")
|
547 |
-
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg",
|
|
|
548 |
|
549 |
if audio_file:
|
550 |
st.audio(audio_file.getvalue())
|
|
|
|
|
551 |
upload_button = st.button("Analyze Upload", key="analyze_upload")
|
552 |
|
553 |
if upload_button:
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
display_analysis_results(transcribed_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score)
|
572 |
-
else:
|
573 |
-
st.error("Could not transcribe the audio. Try clearer audio.")
|
574 |
-
|
575 |
-
progress_bar.progress(100, text="Analysis complete!")
|
576 |
-
if os.path.exists(temp_audio_path):
|
577 |
-
os.remove(temp_audio_path)
|
578 |
-
else:
|
579 |
-
st.error("Could not process the audio file.")
|
580 |
|
581 |
with tab2:
|
582 |
st.header("Record Your Voice")
|
|
|
|
|
|
|
|
|
|
|
583 |
audio_data = custom_audio_recorder()
|
584 |
|
585 |
if audio_data:
|
586 |
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
|
587 |
|
588 |
if analyze_rec_button:
|
589 |
-
|
590 |
-
|
591 |
|
592 |
-
|
593 |
-
|
594 |
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
|
600 |
-
|
601 |
-
|
602 |
-
is_sarcastic, sarcasm_score = sarcasm_future.result()
|
603 |
-
|
604 |
-
progress_bar.progress(90, text="Finalizing results...")
|
605 |
-
if transcribed_text:
|
606 |
-
display_analysis_results(transcribed_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score)
|
607 |
-
else:
|
608 |
-
st.error("Could not transcribe the audio. Speak clearly.")
|
609 |
-
|
610 |
-
progress_bar.progress(100, text="Analysis complete!")
|
611 |
-
if os.path.exists(temp_audio_path):
|
612 |
-
os.remove(temp_audio_path)
|
613 |
-
else:
|
614 |
-
st.error("Could not process the recording.")
|
615 |
|
616 |
st.subheader("Manual Text Input")
|
617 |
-
|
|
|
|
|
618 |
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
|
619 |
|
620 |
if analyze_text_button and manual_text:
|
621 |
-
|
622 |
-
emotion_future = executor.submit(perform_emotion_detection, manual_text)
|
623 |
-
sarcasm_future = executor.submit(perform_sarcasm_detection, manual_text)
|
624 |
-
|
625 |
-
emotions_dict, top_emotion, emotion_map, sentiment = emotion_future.result()
|
626 |
-
is_sarcastic, sarcasm_score = sarcasm_future.result()
|
627 |
-
|
628 |
-
display_analysis_results(manual_text, emotions_dict, top_emotion, emotion_map, sentiment, is_sarcastic, sarcasm_score)
|
629 |
|
630 |
show_model_info()
|
631 |
-
st.sidebar.markdown("---")
|
632 |
-
st.sidebar.caption("Voice Sentiment Analysis v2.1")
|
633 |
-
st.sidebar.caption("Optimized for speed and accuracy")
|
634 |
|
635 |
if __name__ == "__main__":
|
636 |
main()
|
|
|
13 |
import base64
|
14 |
import io
|
15 |
import streamlit.components.v1 as components
|
|
|
|
|
|
|
16 |
|
17 |
# Suppress warnings for a clean console
|
18 |
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
|
|
20 |
warnings.filterwarnings("ignore")
|
21 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Check if CUDA is available, otherwise use CPU
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
print(f"Using device: {device}")
|
|
|
29 |
|
30 |
# Interface design
|
31 |
st.title("π Voice Based Sentiment Analysis")
|
32 |
+
st.write("Detect emotions, sentiment, and sarcasm from your voice with state-of-the-art accuracy using OpenAI Whisper.")
|
33 |
|
34 |
+
# Emotion Detection Function
|
35 |
@st.cache_resource
|
36 |
def get_emotion_classifier():
|
37 |
try:
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", use_fast=True)
|
|
|
|
|
39 |
model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
40 |
model = model.to(device)
|
41 |
+
|
|
|
42 |
classifier = pipeline("text-classification",
|
43 |
model=model,
|
44 |
tokenizer=tokenizer,
|
45 |
+
top_k=None,
|
46 |
device=0 if torch.cuda.is_available() else -1)
|
47 |
|
48 |
+
# Add a verification test to make sure the model is working
|
49 |
test_result = classifier("I am happy today")
|
50 |
print(f"Emotion classifier test: {test_result}")
|
51 |
|
|
|
55 |
st.error(f"Failed to load emotion model. Please check logs.")
|
56 |
return None
|
57 |
|
58 |
+
def perform_emotion_detection(text):
|
|
|
|
|
59 |
try:
|
60 |
if not text or len(text.strip()) < 3:
|
61 |
+
return {}, "neutral", {}, "NEUTRAL"
|
62 |
|
63 |
emotion_classifier = get_emotion_classifier()
|
64 |
if emotion_classifier is None:
|
65 |
st.error("Emotion classifier not available.")
|
66 |
+
return {}, "neutral", {}, "NEUTRAL"
|
67 |
|
|
|
68 |
emotion_results = emotion_classifier(text)
|
69 |
+
print(f"Raw emotion classifier output: {emotion_results}")
|
70 |
+
if not emotion_results or not isinstance(emotion_results, list) or not emotion_results[0]:
|
71 |
+
st.error("Emotion classifier returned invalid or empty results.")
|
72 |
+
return {}, "neutral", {}, "NEUTRAL"
|
73 |
|
74 |
+
# Access the first inner list, which contains the emotion dictionaries
|
75 |
+
emotion_results = emotion_results[0]
|
76 |
emotion_map = {
|
77 |
"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨",
|
78 |
+
"sadness": "π", "surprise": "π²"
|
79 |
}
|
|
|
80 |
positive_emotions = ["joy"]
|
81 |
negative_emotions = ["anger", "disgust", "fear", "sadness"]
|
82 |
+
neutral_emotions = ["surprise"]
|
83 |
+
|
84 |
+
emotions_dict = {}
|
85 |
+
for result in emotion_results:
|
86 |
+
if isinstance(result, dict) and 'label' in result and 'score' in result:
|
87 |
+
emotions_dict[result['label']] = result['score']
|
88 |
+
else:
|
89 |
+
print(f"Invalid result format: {result}")
|
90 |
|
91 |
+
if not emotions_dict:
|
92 |
+
st.error("No valid emotions detected.")
|
93 |
+
return {}, "neutral", {}, "NEUTRAL"
|
94 |
|
95 |
+
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.01}
|
|
|
96 |
|
97 |
if not filtered_emotions:
|
98 |
filtered_emotions = emotions_dict
|
99 |
|
100 |
+
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
|
101 |
+
top_score = filtered_emotions[top_emotion]
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
if top_emotion in positive_emotions:
|
|
|
|
|
|
|
104 |
sentiment = "POSITIVE"
|
105 |
elif top_emotion in negative_emotions:
|
106 |
sentiment = "NEGATIVE"
|
107 |
else:
|
108 |
+
competing_emotions = sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]
|
109 |
+
if len(competing_emotions) > 1:
|
110 |
+
if (competing_emotions[0][0] in neutral_emotions and
|
111 |
+
competing_emotions[1][0] not in neutral_emotions and
|
112 |
+
competing_emotions[1][1] > 0.7 * competing_emotions[0][1]):
|
113 |
+
top_emotion = competing_emotions[1][0]
|
114 |
+
if top_emotion in positive_emotions:
|
115 |
+
sentiment = "POSITIVE"
|
116 |
+
elif top_emotion in negative_emotions:
|
117 |
+
sentiment = "NEGATIVE"
|
118 |
+
else:
|
119 |
+
sentiment = "NEUTRAL"
|
120 |
+
else:
|
121 |
+
sentiment = "NEUTRAL"
|
122 |
+
else:
|
123 |
+
sentiment = "NEUTRAL"
|
124 |
+
|
125 |
+
print(f"Text: {text[:50]}...")
|
126 |
+
print(f"Top 3 emotions: {sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]}")
|
127 |
+
print(f"Selected top emotion: {top_emotion} ({filtered_emotions.get(top_emotion, 0):.3f})")
|
128 |
+
print(f"Sentiment determined: {sentiment}")
|
129 |
+
print(f"All emotions detected: {emotions_dict}")
|
130 |
+
print(f"Filtered emotions: {filtered_emotions}")
|
131 |
+
print(f"Emotion classification threshold: 0.01")
|
132 |
|
133 |
return emotions_dict, top_emotion, emotion_map, sentiment
|
134 |
except Exception as e:
|
135 |
st.error(f"Emotion detection failed: {str(e)}")
|
136 |
print(f"Exception in emotion detection: {str(e)}")
|
137 |
+
return {}, "neutral", {}, "NEUTRAL"
|
138 |
|
139 |
# Sarcasm Detection Function
|
140 |
@st.cache_resource
|
141 |
def get_sarcasm_classifier():
|
142 |
try:
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony", use_fast=True)
|
|
|
|
|
144 |
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
|
145 |
model = model.to(device)
|
146 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer,
|
|
|
|
|
|
|
|
|
147 |
device=0 if torch.cuda.is_available() else -1)
|
148 |
|
149 |
+
# Add a verification test to ensure the model is working
|
150 |
test_result = classifier("This is totally amazing")
|
151 |
print(f"Sarcasm classifier test: {test_result}")
|
152 |
|
|
|
156 |
st.error(f"Failed to load sarcasm model. Please check logs.")
|
157 |
return None
|
158 |
|
159 |
+
def perform_sarcasm_detection(text):
|
|
|
160 |
try:
|
161 |
if not text or len(text.strip()) < 3:
|
162 |
return False, 0.0
|
|
|
174 |
st.error(f"Sarcasm detection failed: {str(e)}")
|
175 |
return False, 0.0
|
176 |
|
177 |
+
# Validate audio quality
|
178 |
+
def validate_audio(audio_path):
|
179 |
try:
|
180 |
sound = AudioSegment.from_file(audio_path)
|
181 |
+
if sound.dBFS < -55:
|
182 |
+
st.warning("Audio volume is too low. Please record or upload a louder audio.")
|
183 |
+
return False
|
184 |
+
if len(sound) < 1000: # Less than 1 second
|
185 |
+
st.warning("Audio is too short. Please record a longer audio.")
|
186 |
return False
|
187 |
return True
|
188 |
+
except:
|
189 |
+
st.error("Invalid or corrupted audio file.")
|
190 |
return False
|
191 |
|
192 |
# Speech Recognition with Whisper
|
193 |
@st.cache_resource
|
194 |
def load_whisper_model():
|
195 |
try:
|
196 |
+
model = whisper.load_model("large-v3")
|
197 |
return model
|
198 |
except Exception as e:
|
199 |
print(f"Error loading Whisper model: {str(e)}")
|
200 |
st.error(f"Failed to load Whisper model. Please check logs.")
|
201 |
return None
|
202 |
|
203 |
+
def transcribe_audio(audio_path, show_alternative=False):
|
|
|
204 |
try:
|
205 |
+
st.write(f"Processing audio file: {audio_path}")
|
206 |
sound = AudioSegment.from_file(audio_path)
|
207 |
+
st.write(
|
208 |
+
f"Audio duration: {len(sound) / 1000:.2f}s, Sample rate: {sound.frame_rate}, Channels: {sound.channels}")
|
209 |
+
|
210 |
# Convert to WAV format (16kHz, mono) for Whisper
|
211 |
+
temp_wav_path = os.path.join(tempfile.gettempdir(), "temp_converted.wav")
|
212 |
+
sound = sound.set_frame_rate(22050)
|
213 |
+
sound = sound.set_channels(1)
|
214 |
sound.export(temp_wav_path, format="wav")
|
215 |
|
216 |
+
# Load Whisper model
|
217 |
model = load_whisper_model()
|
218 |
+
|
219 |
+
# Transcribe audio
|
220 |
+
result = model.transcribe(temp_wav_path, language="en")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
main_text = result["text"].strip()
|
222 |
|
223 |
# Clean up
|
224 |
if os.path.exists(temp_wav_path):
|
225 |
os.remove(temp_wav_path)
|
226 |
|
227 |
+
# Whisper doesn't provide alternatives, so return empty list
|
228 |
+
if show_alternative:
|
229 |
+
return main_text, []
|
230 |
return main_text
|
231 |
except Exception as e:
|
232 |
st.error(f"Transcription failed: {str(e)}")
|
233 |
+
return "", [] if show_alternative else ""
|
234 |
|
235 |
+
# Function to handle uploaded audio files
|
236 |
+
def process_uploaded_audio(audio_file):
|
237 |
if not audio_file:
|
238 |
return None
|
239 |
|
240 |
try:
|
241 |
temp_dir = tempfile.gettempdir()
|
242 |
+
|
243 |
+
ext = audio_file.name.split('.')[-1].lower()
|
244 |
+
if ext not in ['wav', 'mp3', 'ogg']:
|
245 |
+
st.error("Unsupported audio format. Please upload WAV, MP3, or OGG.")
|
246 |
return None
|
|
|
247 |
temp_file_path = os.path.join(temp_dir, f"uploaded_audio_{int(time.time())}.{ext}")
|
248 |
+
|
249 |
with open(temp_file_path, "wb") as f:
|
250 |
f.write(audio_file.getvalue())
|
251 |
|
252 |
if not validate_audio(temp_file_path):
|
253 |
+
return None
|
254 |
+
|
255 |
return temp_file_path
|
256 |
except Exception as e:
|
257 |
st.error(f"Error processing uploaded audio: {str(e)}")
|
|
|
260 |
# Show model information
|
261 |
def show_model_info():
|
262 |
st.sidebar.header("π§ About the Models")
|
263 |
+
|
264 |
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
|
265 |
|
266 |
with model_tabs[0]:
|
267 |
st.markdown("""
|
268 |
*Emotion Model*: distilbert-base-uncased-emotion
|
269 |
+
- Fine-tuned for six emotions (joy, anger, disgust, fear, sadness, surprise)
|
270 |
- Architecture: DistilBERT base
|
271 |
+
- High accuracy for basic emotion classification
|
272 |
[π Model Hub](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
|
273 |
""")
|
274 |
|
275 |
with model_tabs[1]:
|
276 |
st.markdown("""
|
277 |
*Sarcasm Model*: cardiffnlp/twitter-roberta-base-irony
|
278 |
+
- Trained on SemEval-2018 Task 3 (Twitter irony dataset)
|
279 |
- Architecture: RoBERTa base
|
280 |
+
- F1-score: 0.705
|
281 |
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
|
282 |
""")
|
283 |
|
284 |
with model_tabs[2]:
|
285 |
st.markdown("""
|
286 |
+
*Speech Recognition*: OpenAI Whisper (large-v3)
|
287 |
+
- State-of-the-art model for speech-to-text
|
288 |
+
- Accuracy: ~5-10% WER on clean English audio
|
289 |
+
- Robust to noise, accents, and varied conditions
|
290 |
+
- Runs locally, no internet required
|
291 |
+
*Tips*: Use good mic, reduce noise, speak clearly
|
292 |
[π Model Details](https://github.com/openai/whisper)
|
293 |
""")
|
294 |
|
295 |
+
# Custom audio recorder using HTML/JS
|
296 |
def custom_audio_recorder():
|
297 |
+
st.warning("Browser-based recording requires microphone access and a modern browser. If recording fails, try uploading an audio file instead.")
|
298 |
audio_recorder_html = """
|
299 |
<script>
|
300 |
var audioRecorder = {
|
301 |
audioBlobs: [],
|
302 |
mediaRecorder: null,
|
303 |
streamBeingCaptured: null,
|
|
|
|
|
304 |
start: function() {
|
305 |
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
|
306 |
+
return Promise.reject(new Error('mediaDevices API or getUserMedia method is not supported in this browser.'));
|
307 |
+
}
|
308 |
+
else {
|
309 |
+
return navigator.mediaDevices.getUserMedia({ audio: true })
|
310 |
+
.then(stream => {
|
311 |
+
audioRecorder.streamBeingCaptured = stream;
|
312 |
+
audioRecorder.mediaRecorder = new MediaRecorder(stream);
|
313 |
+
audioRecorder.audioBlobs = [];
|
314 |
+
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
|
315 |
+
audioRecorder.audioBlobs.push(event.data);
|
316 |
+
});
|
317 |
+
audioRecorder.mediaRecorder.start();
|
318 |
+
});
|
319 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
},
|
|
|
321 |
stop: function() {
|
322 |
return new Promise(resolve => {
|
323 |
let mimeType = audioRecorder.mediaRecorder.mimeType;
|
324 |
audioRecorder.mediaRecorder.addEventListener("stop", () => {
|
325 |
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
|
326 |
resolve(audioBlob);
|
|
|
|
|
327 |
});
|
328 |
audioRecorder.mediaRecorder.stop();
|
329 |
+
audioRecorder.stopStream();
|
330 |
+
audioRecorder.resetRecordingProperties();
|
|
|
331 |
});
|
332 |
+
},
|
333 |
+
stopStream: function() {
|
334 |
+
audioRecorder.streamBeingCaptured.getTracks()
|
335 |
+
.forEach(track => track.stop());
|
336 |
+
},
|
337 |
+
resetRecordingProperties: function() {
|
338 |
+
audioRecorder.mediaRecorder = null;
|
339 |
+
audioRecorder.streamBeingCaptured = null;
|
340 |
}
|
341 |
}
|
|
|
342 |
var isRecording = false;
|
343 |
+
var recordButton = document.getElementById('record-button');
|
344 |
+
var audioElement = document.getElementById('audio-playback');
|
345 |
+
var audioData = document.getElementById('audio-data');
|
346 |
function toggleRecording() {
|
|
|
|
|
|
|
347 |
if (!isRecording) {
|
348 |
audioRecorder.start()
|
349 |
.then(() => {
|
|
|
352 |
recordButton.classList.add('recording');
|
353 |
})
|
354 |
.catch(error => {
|
355 |
+
alert('Error starting recording: ' + error.message);
|
356 |
});
|
357 |
} else {
|
358 |
audioRecorder.stop()
|
359 |
.then(audioBlob => {
|
360 |
const audioUrl = URL.createObjectURL(audioBlob);
|
|
|
361 |
audioElement.src = audioUrl;
|
|
|
|
|
362 |
const reader = new FileReader();
|
363 |
reader.readAsDataURL(audioBlob);
|
364 |
reader.onloadend = function() {
|
365 |
const base64data = reader.result;
|
|
|
366 |
audioData.value = base64data;
|
367 |
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
|
368 |
window.parent.postMessage(streamlitMessage, "*");
|
369 |
}
|
|
|
370 |
isRecording = false;
|
371 |
recordButton.textContent = 'Start Recording';
|
372 |
recordButton.classList.remove('recording');
|
373 |
});
|
374 |
}
|
375 |
}
|
|
|
376 |
document.addEventListener('DOMContentLoaded', function() {
|
377 |
+
recordButton = document.getElementById('record-button');
|
378 |
+
audioElement = document.getElementById('audio-playback');
|
379 |
+
audioData = document.getElementById('audio-data');
|
380 |
recordButton.addEventListener('click', toggleRecording);
|
381 |
});
|
382 |
</script>
|
|
|
383 |
<div class="audio-recorder-container">
|
384 |
<button id="record-button" class="record-button">Start Recording</button>
|
385 |
+
<audio id="audio-playback" controls style="display:block; margin-top:10px;"></audio>
|
|
|
386 |
<input type="hidden" id="audio-data" name="audio-data">
|
387 |
</div>
|
|
|
388 |
<style>
|
389 |
.audio-recorder-container {
|
390 |
display: flex;
|
391 |
flex-direction: column;
|
392 |
align-items: center;
|
393 |
+
padding: 20px;
|
|
|
|
|
|
|
394 |
}
|
|
|
395 |
.record-button {
|
396 |
background-color: #f63366;
|
397 |
color: white;
|
398 |
border: none;
|
399 |
+
padding: 10px 20px;
|
400 |
+
border-radius: 5px;
|
401 |
cursor: pointer;
|
402 |
font-size: 16px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
}
|
|
|
404 |
.record-button.recording {
|
405 |
background-color: #ff0000;
|
406 |
animation: pulse 1.5s infinite;
|
407 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
@keyframes pulse {
|
409 |
+
0% { opacity: 1; }
|
410 |
+
50% { opacity: 0.7; }
|
411 |
+
100% { opacity: 1; }
|
412 |
}
|
413 |
</style>
|
414 |
"""
|
415 |
|
416 |
return components.html(audio_recorder_html, height=150)
|
417 |
|
418 |
+
# Function to display analysis results
|
419 |
+
def display_analysis_results(transcribed_text):
|
420 |
st.session_state.debug_info = st.session_state.get('debug_info', [])
|
421 |
+
st.session_state.debug_info.append(f"Processing text: {transcribed_text[:50]}...")
|
422 |
+
st.session_state.debug_info = st.session_state.debug_info[-100:] # Keep last 100 entries
|
423 |
+
|
424 |
+
emotions_dict, top_emotion, emotion_map, sentiment = perform_emotion_detection(transcribed_text)
|
425 |
+
is_sarcastic, sarcasm_score = perform_sarcasm_detection(transcribed_text)
|
426 |
+
|
427 |
+
# Add results to debug info
|
428 |
+
st.session_state.debug_info.append(f"Top emotion: {top_emotion}, Sentiment: {sentiment}")
|
429 |
+
st.session_state.debug_info.append(f"Sarcasm: {is_sarcastic}, Score: {sarcasm_score:.3f}")
|
430 |
|
431 |
st.header("Transcribed Text")
|
432 |
+
st.text_area("Text", transcribed_text, height=150, disabled=True, help="The audio converted to text.")
|
433 |
|
434 |
+
confidence_score = min(0.95, max(0.70, len(transcribed_text.split()) / 50))
|
435 |
+
st.caption(f"Estimated transcription confidence: {confidence_score:.2f} (based on text length)")
|
|
|
|
|
436 |
|
437 |
st.header("Analysis Results")
|
438 |
col1, col2 = st.columns([1, 2])
|
439 |
|
440 |
with col1:
|
441 |
st.subheader("Sentiment")
|
442 |
+
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
|
443 |
+
st.markdown(f"{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
|
444 |
+
st.info("Sentiment reflects the dominant emotion's tone.")
|
445 |
|
446 |
st.subheader("Sarcasm")
|
447 |
sarcasm_icon = "π" if is_sarcastic else "π"
|
448 |
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
|
449 |
+
st.markdown(f"{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
|
450 |
+
st.info("Score indicates sarcasm confidence (0 to 1).")
|
451 |
|
452 |
with col2:
|
453 |
st.subheader("Emotions")
|
454 |
if emotions_dict:
|
455 |
+
st.markdown(
|
456 |
+
f"*Dominant:* {emotion_map.get(top_emotion, 'β')} {top_emotion.capitalize()} (Score: {emotions_dict[top_emotion]:.3f})")
|
457 |
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
|
458 |
+
top_emotions = sorted_emotions[:8]
|
459 |
+
emotions = [e[0] for e in top_emotions]
|
460 |
+
scores = [e[1] for e in top_emotions]
|
461 |
+
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'},
|
462 |
+
title="Top Emotions Distribution", color=emotions,
|
463 |
+
color_discrete_sequence=px.colors.qualitative.Bold)
|
464 |
+
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14)
|
465 |
+
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
466 |
else:
|
467 |
st.write("No emotions detected.")
|
468 |
|
|
|
469 |
with st.expander("Debug Information", expanded=False):
|
470 |
+
st.write("Debugging information for troubleshooting:")
|
471 |
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
|
472 |
st.text(f"{i + 1}. {debug_line}")
|
473 |
if emotions_dict:
|
474 |
st.write("Raw emotion scores:")
|
475 |
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
|
476 |
+
if score > 0.01: # Only show non-negligible scores
|
477 |
st.text(f"{emotion}: {score:.4f}")
|
478 |
|
479 |
+
with st.expander("Analysis Details", expanded=False):
|
480 |
+
st.write("""
|
481 |
+
*How this works:*
|
482 |
+
1. *Speech Recognition*: Audio transcribed using OpenAI Whisper (large-v3)
|
483 |
+
2. *Emotion Analysis*: DistilBERT model trained for six emotions
|
484 |
+
3. *Sentiment Analysis*: Derived from dominant emotion
|
485 |
+
4. *Sarcasm Detection*: RoBERTa model for irony detection
|
486 |
+
*Accuracy depends on*:
|
487 |
+
- Audio quality
|
488 |
+
- Speech clarity
|
489 |
+
- Background noise
|
490 |
+
- Speech patterns
|
491 |
+
""")
|
492 |
+
|
493 |
# Process base64 audio data
|
494 |
def process_base64_audio(base64_data):
|
495 |
try:
|
|
|
|
|
|
|
|
|
496 |
base64_binary = base64_data.split(',')[1]
|
497 |
binary_data = base64.b64decode(base64_binary)
|
498 |
+
|
499 |
+
temp_dir = tempfile.gettempdir()
|
500 |
+
temp_file_path = os.path.join(temp_dir, f"recording_{int(time.time())}.wav")
|
501 |
|
502 |
with open(temp_file_path, "wb") as f:
|
503 |
f.write(binary_data)
|
504 |
|
505 |
if not validate_audio(temp_file_path):
|
506 |
+
return None
|
507 |
+
|
508 |
return temp_file_path
|
509 |
except Exception as e:
|
510 |
st.error(f"Error processing audio data: {str(e)}")
|
511 |
return None
|
512 |
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
# Main App Logic
|
514 |
def main():
|
515 |
if 'debug_info' not in st.session_state:
|
516 |
st.session_state.debug_info = []
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
|
518 |
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
|
519 |
|
520 |
with tab1:
|
521 |
st.header("Upload an Audio File")
|
522 |
+
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"],
|
523 |
+
help="Upload an audio file for analysis")
|
524 |
|
525 |
if audio_file:
|
526 |
st.audio(audio_file.getvalue())
|
527 |
+
st.caption("π§ Uploaded Audio Playback")
|
528 |
+
|
529 |
upload_button = st.button("Analyze Upload", key="analyze_upload")
|
530 |
|
531 |
if upload_button:
|
532 |
+
with st.spinner('Analyzing audio with advanced precision...'):
|
533 |
+
temp_audio_path = process_uploaded_audio(audio_file)
|
534 |
+
if temp_audio_path:
|
535 |
+
main_text, alternatives = transcribe_audio(temp_audio_path, show_alternative=True)
|
536 |
+
|
537 |
+
if main_text:
|
538 |
+
if alternatives:
|
539 |
+
with st.expander("Alternative transcriptions detected", expanded=False):
|
540 |
+
for i, alt in enumerate(alternatives[:3], 1):
|
541 |
+
st.write(f"{i}. {alt}")
|
542 |
+
|
543 |
+
display_analysis_results(main_text)
|
544 |
+
else:
|
545 |
+
st.error("Could not transcribe the audio. Please try again with clearer audio.")
|
546 |
+
|
547 |
+
if os.path.exists(temp_audio_path):
|
548 |
+
os.remove(temp_audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
|
550 |
with tab2:
|
551 |
st.header("Record Your Voice")
|
552 |
+
st.write("Use the recorder below to analyze your speech in real-time.")
|
553 |
+
|
554 |
+
st.subheader("Browser-Based Recorder")
|
555 |
+
st.write("Click the button below to start/stop recording.")
|
556 |
+
|
557 |
audio_data = custom_audio_recorder()
|
558 |
|
559 |
if audio_data:
|
560 |
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
|
561 |
|
562 |
if analyze_rec_button:
|
563 |
+
with st.spinner("Processing your recording..."):
|
564 |
+
temp_audio_path = process_base64_audio(audio_data)
|
565 |
|
566 |
+
if temp_audio_path:
|
567 |
+
transcribed_text = transcribe_audio(temp_audio_path)
|
568 |
|
569 |
+
if transcribed_text:
|
570 |
+
display_analysis_results(transcribed_text)
|
571 |
+
else:
|
572 |
+
st.error("Could not transcribe the audio. Please try speaking more clearly.")
|
573 |
|
574 |
+
if os.path.exists(temp_audio_path):
|
575 |
+
os.remove(temp_audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
577 |
st.subheader("Manual Text Input")
|
578 |
+
st.write("If recording doesn't work, you can type your text here:")
|
579 |
+
|
580 |
+
manual_text = st.text_area("Enter text to analyze:", placeholder="Type what you want to analyze...")
|
581 |
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
|
582 |
|
583 |
if analyze_text_button and manual_text:
|
584 |
+
display_analysis_results(manual_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
|
586 |
show_model_info()
|
|
|
|
|
|
|
587 |
|
588 |
if __name__ == "__main__":
|
589 |
main()
|