Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import os
|
|
2 |
import streamlit as st
|
3 |
import tempfile
|
4 |
import torch
|
5 |
-
import torchaudio
|
6 |
import transformers
|
7 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
8 |
import plotly.express as px
|
@@ -15,6 +14,15 @@ import asyncio
|
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
import streamlit.components.v1 as components
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Suppress warnings
|
19 |
logging.getLogger("torch").setLevel(logging.ERROR)
|
20 |
logging.getLogger("transformers").setLevel(logging.ERROR)
|
@@ -33,21 +41,25 @@ st.markdown("Fast, accurate detection of emotions, sentiment, and sarcasm from v
|
|
33 |
# Global model cache
|
34 |
@st.cache_resource
|
35 |
def load_models():
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
whisper_model, emotion_classifier, sarcasm_classifier = load_models()
|
53 |
|
@@ -90,29 +102,45 @@ async def perform_sarcasm_detection(text):
|
|
90 |
# Audio validation
|
91 |
def validate_audio(audio_path):
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
return True
|
101 |
-
except:
|
102 |
-
st.error("Invalid audio file
|
103 |
return False
|
104 |
|
105 |
# Audio transcription
|
106 |
@st.cache_data
|
107 |
def transcribe_audio(audio_path):
|
108 |
try:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
os.remove(temp_file.name)
|
117 |
return result["text"].strip()
|
118 |
except Exception as e:
|
@@ -283,7 +311,8 @@ def main():
|
|
283 |
display_analysis_results(text)
|
284 |
else:
|
285 |
st.error("Transcription failed.")
|
286 |
-
os.
|
|
|
287 |
progress.empty()
|
288 |
|
289 |
with tab2:
|
@@ -300,7 +329,8 @@ def main():
|
|
300 |
display_analysis_results(text)
|
301 |
else:
|
302 |
st.error("Transcription failed.")
|
303 |
-
os.
|
|
|
304 |
progress.empty()
|
305 |
|
306 |
with tab3:
|
|
|
2 |
import streamlit as st
|
3 |
import tempfile
|
4 |
import torch
|
|
|
5 |
import transformers
|
6 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
import plotly.express as px
|
|
|
14 |
from concurrent.futures import ThreadPoolExecutor
|
15 |
import streamlit.components.v1 as components
|
16 |
|
17 |
+
# Try importing torchaudio, fallback to pydub
|
18 |
+
try:
|
19 |
+
import torchaudio
|
20 |
+
USE_TORCHAUDIO = True
|
21 |
+
except ImportError:
|
22 |
+
from pydub import AudioSegment
|
23 |
+
USE_TORCHAUDIO = False
|
24 |
+
st.warning("torchaudio not found. Using pydub (slower). Install torchaudio: pip install torchaudio")
|
25 |
+
|
26 |
# Suppress warnings
|
27 |
logging.getLogger("torch").setLevel(logging.ERROR)
|
28 |
logging.getLogger("transformers").setLevel(logging.ERROR)
|
|
|
41 |
# Global model cache
|
42 |
@st.cache_resource
|
43 |
def load_models():
|
44 |
+
try:
|
45 |
+
whisper_model = whisper.load_model("base")
|
46 |
+
|
47 |
+
emotion_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
48 |
+
emotion_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
49 |
+
emotion_model = emotion_model.to(device).half()
|
50 |
+
emotion_classifier = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer,
|
51 |
+
top_k=None, device=0 if torch.cuda.is_available() else -1)
|
52 |
|
53 |
+
sarcasm_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
|
54 |
+
sarcasm_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
|
55 |
+
sarcasm_model = sarcasm_model.to(device).half()
|
56 |
+
sarcasm_classifier = pipeline("text-classification", model=sarcasm_model, tokenizer=sarcasm_tokenizer,
|
57 |
+
device=0 if torch.cuda.is_available() else -1)
|
58 |
+
|
59 |
+
return whisper_model, emotion_classifier, sarcasm_classifier
|
60 |
+
except Exception as e:
|
61 |
+
st.error(f"Failed to load models: {str(e)}")
|
62 |
+
raise
|
63 |
|
64 |
whisper_model, emotion_classifier, sarcasm_classifier = load_models()
|
65 |
|
|
|
102 |
# Audio validation
|
103 |
def validate_audio(audio_path):
|
104 |
try:
|
105 |
+
if USE_TORCHAUDIO:
|
106 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
107 |
+
if waveform.abs().max() < 0.01:
|
108 |
+
st.warning("Audio volume too low.")
|
109 |
+
return False
|
110 |
+
if waveform.shape[1] / sample_rate < 1:
|
111 |
+
st.warning("Audio too short.")
|
112 |
+
return False
|
113 |
+
else:
|
114 |
+
sound = AudioSegment.from_file(audio_path)
|
115 |
+
if sound.dBFS < -55:
|
116 |
+
st.warning("Audio volume too low.")
|
117 |
+
return False
|
118 |
+
if len(sound) < 1000:
|
119 |
+
st.warning("Audio too short.")
|
120 |
+
return False
|
121 |
return True
|
122 |
+
except Exception as e:
|
123 |
+
st.error(f"Invalid audio file: {str(e)}")
|
124 |
return False
|
125 |
|
126 |
# Audio transcription
|
127 |
@st.cache_data
|
128 |
def transcribe_audio(audio_path):
|
129 |
try:
|
130 |
+
if USE_TORCHAUDIO:
|
131 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
132 |
+
if sample_rate != 16000:
|
133 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
134 |
+
waveformვ: waveform = resampler(waveform)
|
135 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
136 |
+
torchaudio.save(temp_file.name, waveform, 16000)
|
137 |
+
result = whisper_model.transcribe(temp_file.name, language="en")
|
138 |
+
else:
|
139 |
+
sound = AudioSegment.from_file(audio_path)
|
140 |
+
sound = sound.set_frame_rate(16000).set_channels(1)
|
141 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
142 |
+
sound.export(temp_file.name, format="wav")
|
143 |
+
result = whisper_model.transcribe(temp_file.name, language="en")
|
144 |
os.remove(temp_file.name)
|
145 |
return result["text"].strip()
|
146 |
except Exception as e:
|
|
|
311 |
display_analysis_results(text)
|
312 |
else:
|
313 |
st.error("Transcription failed.")
|
314 |
+
if os.path.exists(temp_path):
|
315 |
+
os.remove(temp_path)
|
316 |
progress.empty()
|
317 |
|
318 |
with tab2:
|
|
|
329 |
display_analysis_results(text)
|
330 |
else:
|
331 |
st.error("Transcription failed.")
|
332 |
+
if os.path.exists(temp_path):
|
333 |
+
os.remove(temp_path)
|
334 |
progress.empty()
|
335 |
|
336 |
with tab3:
|