Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,9 @@ import time
|
|
13 |
import base64
|
14 |
import io
|
15 |
import streamlit.components.v1 as components
|
16 |
-
import
|
|
|
|
|
17 |
|
18 |
# Suppress warnings for a clean console
|
19 |
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
@@ -21,14 +23,6 @@ logging.getLogger("transformers").setLevel(logging.CRITICAL)
|
|
21 |
warnings.filterwarnings("ignore")
|
22 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
|
24 |
-
# Check if NumPy is available
|
25 |
-
try:
|
26 |
-
test_array = np.array([1, 2, 3])
|
27 |
-
torch.from_numpy(test_array)
|
28 |
-
except Exception as e:
|
29 |
-
st.error(f"NumPy is not available or incompatible with PyTorch: {str(e)}. Ensure 'numpy' is in requirements.txt and reinstall dependencies.")
|
30 |
-
st.stop()
|
31 |
-
|
32 |
# Check if CUDA is available, otherwise use CPU
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
print(f"Using device: {device}")
|
@@ -38,293 +32,979 @@ st.set_page_config(layout="wide", page_title="Voice Based Sentiment Analysis")
|
|
38 |
|
39 |
# Interface design
|
40 |
st.title("π Voice Based Sentiment Analysis")
|
41 |
-
st.write("Detect emotions, sentiment, and sarcasm from your voice with
|
42 |
|
43 |
-
# Emotion Detection Function
|
44 |
@st.cache_resource
|
45 |
def get_emotion_classifier():
|
46 |
try:
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion",
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
classifier = pipeline("text-classification",
|
52 |
model=model,
|
53 |
tokenizer=tokenizer,
|
54 |
top_k=None,
|
55 |
device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
56 |
return classifier
|
57 |
except Exception as e:
|
58 |
-
|
|
|
59 |
return None
|
60 |
|
61 |
-
|
|
|
|
|
62 |
try:
|
|
|
63 |
if not text or len(text.strip()) < 3:
|
64 |
-
return {}, "neutral", {}, "NEUTRAL"
|
|
|
65 |
emotion_classifier = get_emotion_classifier()
|
66 |
-
if
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
emotion_map = {
|
70 |
"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨",
|
71 |
-
"sadness": "π", "surprise": "π²"
|
72 |
}
|
|
|
73 |
positive_emotions = ["joy"]
|
74 |
negative_emotions = ["anger", "disgust", "fear", "sadness"]
|
75 |
-
neutral_emotions = ["surprise"]
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if not filtered_emotions:
|
79 |
filtered_emotions = emotions_dict
|
|
|
|
|
80 |
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
|
|
|
|
|
|
|
81 |
if top_emotion in positive_emotions:
|
82 |
sentiment = "POSITIVE"
|
83 |
elif top_emotion in negative_emotions:
|
84 |
sentiment = "NEGATIVE"
|
85 |
else:
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
return emotions_dict, top_emotion, emotion_map, sentiment
|
88 |
except Exception as e:
|
89 |
st.error(f"Emotion detection failed: {str(e)}")
|
90 |
-
|
|
|
91 |
|
92 |
-
# Sarcasm Detection Function
|
93 |
@st.cache_resource
|
94 |
def get_sarcasm_classifier():
|
95 |
try:
|
96 |
-
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony",
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
102 |
return classifier
|
103 |
except Exception as e:
|
104 |
-
|
|
|
105 |
return None
|
106 |
|
107 |
-
|
|
|
|
|
108 |
try:
|
109 |
if not text or len(text.strip()) < 3:
|
110 |
return False, 0.0
|
|
|
111 |
sarcasm_classifier = get_sarcasm_classifier()
|
112 |
-
if
|
|
|
113 |
return False, 0.0
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
except Exception as e:
|
119 |
st.error(f"Sarcasm detection failed: {str(e)}")
|
120 |
return False, 0.0
|
121 |
|
122 |
-
# Validate audio quality
|
123 |
-
def validate_audio(audio_path):
|
124 |
try:
|
125 |
sound = AudioSegment.from_file(audio_path)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
131 |
return False
|
132 |
return True
|
133 |
except Exception as e:
|
134 |
-
st.error(f"Invalid audio file: {str(e)}")
|
135 |
return False
|
136 |
|
137 |
-
# Speech Recognition with Whisper
|
138 |
@st.cache_resource
|
139 |
def load_whisper_model():
|
140 |
try:
|
141 |
-
model
|
|
|
142 |
return model
|
143 |
except Exception as e:
|
144 |
-
|
|
|
145 |
return None
|
146 |
|
147 |
-
|
148 |
-
|
149 |
try:
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
sound.export(temp_wav_path, format="wav")
|
|
|
|
|
153 |
model = load_whisper_model()
|
154 |
-
if
|
155 |
-
return ""
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
except Exception as e:
|
159 |
st.error(f"Transcription failed: {str(e)}")
|
160 |
-
return ""
|
161 |
-
finally:
|
162 |
-
if temp_wav_path and os.path.exists(temp_wav_path):
|
163 |
-
os.remove(temp_wav_path)
|
164 |
|
165 |
-
# Process uploaded audio files
|
166 |
-
def process_uploaded_audio(audio_file):
|
167 |
if not audio_file:
|
168 |
return None
|
169 |
-
|
170 |
try:
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
174 |
return None
|
175 |
-
|
|
|
|
|
176 |
with open(temp_file_path, "wb") as f:
|
177 |
f.write(audio_file.getvalue())
|
|
|
178 |
if not validate_audio(temp_file_path):
|
179 |
-
|
|
|
|
|
180 |
return temp_file_path
|
181 |
except Exception as e:
|
182 |
st.error(f"Error processing uploaded audio: {str(e)}")
|
183 |
return None
|
184 |
-
finally:
|
185 |
-
if temp_file_path and os.path.exists(temp_file_path):
|
186 |
-
os.remove(temp_file_path)
|
187 |
|
188 |
# Show model information
|
189 |
def show_model_info():
|
190 |
st.sidebar.header("π§ About the Models")
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
st.markdown("""
|
193 |
-
|
194 |
-
-
|
195 |
-
-
|
|
|
|
|
|
|
196 |
""")
|
197 |
|
198 |
-
# Custom audio recorder
|
199 |
def custom_audio_recorder():
|
200 |
-
st.warning("
|
201 |
audio_recorder_html = """
|
202 |
<script>
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
}
|
|
|
|
|
|
|
227 |
function toggleRecording() {
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
}
|
|
|
|
|
|
|
|
|
|
|
231 |
</script>
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
<style>
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
background-color: #f63366;
|
236 |
color: white;
|
237 |
border: none;
|
238 |
-
padding:
|
239 |
-
border-radius:
|
240 |
cursor: pointer;
|
|
|
|
|
|
|
|
|
241 |
}
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
background-color: #ff0000;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
}
|
245 |
</style>
|
246 |
"""
|
247 |
-
return components.html(audio_recorder_html, height=100)
|
248 |
|
249 |
-
|
|
|
|
|
250 |
def display_analysis_results(transcribed_text):
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
st.header("Analysis Results")
|
254 |
-
st.text_area("Transcribed Text", transcribed_text, height=100, disabled=True)
|
255 |
col1, col2 = st.columns([1, 2])
|
|
|
256 |
with col1:
|
257 |
st.subheader("Sentiment")
|
258 |
-
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
|
259 |
-
st.markdown(f"{sentiment_icon} {sentiment} (Based on {top_emotion})")
|
|
|
|
|
260 |
st.subheader("Sarcasm")
|
261 |
sarcasm_icon = "π" if is_sarcastic else "π"
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
with col2:
|
264 |
st.subheader("Emotions")
|
265 |
if emotions_dict:
|
266 |
-
st.markdown(
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
else:
|
271 |
st.write("No emotions detected.")
|
272 |
|
273 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
def process_base64_audio(base64_data):
|
275 |
-
temp_file_path = None
|
276 |
try:
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
with open(temp_file_path, "wb") as f:
|
280 |
-
f.write(
|
|
|
|
|
281 |
if not validate_audio(temp_file_path):
|
282 |
-
|
|
|
283 |
return temp_file_path
|
284 |
except Exception as e:
|
285 |
-
st.error(f"Error processing
|
286 |
return None
|
287 |
-
finally:
|
288 |
-
if temp_file_path and os.path.exists(temp_file_path):
|
289 |
-
os.remove(temp_file_path)
|
290 |
|
291 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
def main():
|
|
|
293 |
if 'debug_info' not in st.session_state:
|
294 |
st.session_state.debug_info = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
|
|
|
296 |
with tab1:
|
297 |
st.header("Upload an Audio File")
|
298 |
-
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"]
|
|
|
|
|
299 |
if audio_file:
|
300 |
st.audio(audio_file.getvalue())
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
with tab2:
|
311 |
st.header("Record Your Voice")
|
|
|
|
|
|
|
312 |
st.subheader("Browser-Based Recorder")
|
|
|
|
|
313 |
audio_data = custom_audio_recorder()
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
temp_audio_path = process_base64_audio(audio_data)
|
|
|
317 |
if temp_audio_path:
|
|
|
|
|
|
|
|
|
318 |
transcribed_text = transcribe_audio(temp_audio_path)
|
|
|
319 |
if transcribed_text:
|
|
|
|
|
|
|
|
|
320 |
display_analysis_results(transcribed_text)
|
|
|
|
|
|
|
|
|
321 |
else:
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
st.subheader("Manual Text Input")
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
show_model_info()
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
if __name__ == "__main__":
|
330 |
main()
|
|
|
13 |
import base64
|
14 |
import io
|
15 |
import streamlit.components.v1 as components
|
16 |
+
import functools
|
17 |
+
import threading
|
18 |
+
from typing import Dict, Tuple, List, Any, Optional
|
19 |
|
20 |
# Suppress warnings for a clean console
|
21 |
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
|
|
23 |
warnings.filterwarnings("ignore")
|
24 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Check if CUDA is available, otherwise use CPU
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
print(f"Using device: {device}")
|
|
|
32 |
|
33 |
# Interface design
|
34 |
st.title("π Voice Based Sentiment Analysis")
|
35 |
+
st.write("Detect emotions, sentiment, and sarcasm from your voice with state-of-the-art accuracy using OpenAI Whisper.")
|
36 |
|
37 |
+
# Emotion Detection Function with optimizations
|
38 |
@st.cache_resource
|
39 |
def get_emotion_classifier():
|
40 |
try:
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion",
|
42 |
+
use_fast=True,
|
43 |
+
model_max_length=512)
|
44 |
+
model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
|
45 |
+
model = model.to(device)
|
46 |
+
model.eval() # Set model to evaluation mode for better inference performance
|
47 |
+
|
48 |
+
# Use batch_size for faster processing when appropriate
|
49 |
classifier = pipeline("text-classification",
|
50 |
model=model,
|
51 |
tokenizer=tokenizer,
|
52 |
top_k=None,
|
53 |
device=0 if torch.cuda.is_available() else -1)
|
54 |
+
|
55 |
+
# Verify the model is working with a test
|
56 |
+
test_result = classifier("I am happy today")
|
57 |
+
print(f"Emotion classifier test: {test_result}")
|
58 |
+
|
59 |
return classifier
|
60 |
except Exception as e:
|
61 |
+
print(f"Error loading emotion model: {str(e)}")
|
62 |
+
st.error(f"Failed to load emotion model. Please check logs.")
|
63 |
return None
|
64 |
|
65 |
+
# Cache emotion results to prevent recomputation
|
66 |
+
@st.cache_data(ttl=600) # Cache for 10 minutes
|
67 |
+
def perform_emotion_detection(text: str) -> Tuple[Dict[str, float], str, Dict[str, str], str]:
|
68 |
try:
|
69 |
+
# Handle empty or very short text
|
70 |
if not text or len(text.strip()) < 3:
|
71 |
+
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
|
72 |
+
|
73 |
emotion_classifier = get_emotion_classifier()
|
74 |
+
if emotion_classifier is None:
|
75 |
+
st.error("Emotion classifier not available.")
|
76 |
+
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
|
77 |
+
|
78 |
+
# Chunk long text for better processing
|
79 |
+
max_chunk_size = 512
|
80 |
+
if len(text) > max_chunk_size:
|
81 |
+
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
82 |
+
all_results = []
|
83 |
+
for chunk in chunks:
|
84 |
+
chunk_results = emotion_classifier(chunk)
|
85 |
+
all_results.extend(chunk_results)
|
86 |
+
# Aggregate results across chunks
|
87 |
+
emotion_results = [result[0] for result in all_results]
|
88 |
+
else:
|
89 |
+
emotion_results = emotion_classifier(text)[0]
|
90 |
+
|
91 |
emotion_map = {
|
92 |
"joy": "π", "anger": "π‘", "disgust": "π€’", "fear": "π¨",
|
93 |
+
"sadness": "π", "surprise": "π²", "neutral": "π"
|
94 |
}
|
95 |
+
|
96 |
positive_emotions = ["joy"]
|
97 |
negative_emotions = ["anger", "disgust", "fear", "sadness"]
|
98 |
+
neutral_emotions = ["surprise", "neutral"]
|
99 |
+
|
100 |
+
# Process results
|
101 |
+
emotions_dict = {}
|
102 |
+
for result in emotion_results:
|
103 |
+
if isinstance(result, dict) and 'label' in result and 'score' in result:
|
104 |
+
# If we have multiple chunks, average the scores
|
105 |
+
if result['label'] in emotions_dict:
|
106 |
+
emotions_dict[result['label']] = (emotions_dict[result['label']] + result['score']) / 2
|
107 |
+
else:
|
108 |
+
emotions_dict[result['label']] = result['score']
|
109 |
+
else:
|
110 |
+
print(f"Invalid result format: {result}")
|
111 |
+
|
112 |
+
if not emotions_dict:
|
113 |
+
st.error("No valid emotions detected.")
|
114 |
+
return {}, "neutral", emotion_map, "NEUTRAL"
|
115 |
+
|
116 |
+
# Filter out very low probability emotions (improved threshold)
|
117 |
+
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.05}
|
118 |
+
|
119 |
if not filtered_emotions:
|
120 |
filtered_emotions = emotions_dict
|
121 |
+
|
122 |
+
# Get top emotion
|
123 |
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
|
124 |
+
top_score = filtered_emotions[top_emotion]
|
125 |
+
|
126 |
+
# Determine sentiment with improved logic
|
127 |
if top_emotion in positive_emotions:
|
128 |
sentiment = "POSITIVE"
|
129 |
elif top_emotion in negative_emotions:
|
130 |
sentiment = "NEGATIVE"
|
131 |
else:
|
132 |
+
# Better handling of mixed emotions
|
133 |
+
competing_emotions = sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]
|
134 |
+
|
135 |
+
if len(competing_emotions) > 1:
|
136 |
+
# If top two emotions are close in score
|
137 |
+
if (competing_emotions[1][1] > 0.8 * competing_emotions[0][1]):
|
138 |
+
# Check if second emotion changes sentiment classification
|
139 |
+
second_emotion = competing_emotions[1][0]
|
140 |
+
if second_emotion in positive_emotions:
|
141 |
+
sentiment = "POSITIVE" if top_emotion not in negative_emotions else "MIXED"
|
142 |
+
elif second_emotion in negative_emotions:
|
143 |
+
sentiment = "NEGATIVE" if top_emotion not in positive_emotions else "MIXED"
|
144 |
+
else:
|
145 |
+
sentiment = "NEUTRAL"
|
146 |
+
else:
|
147 |
+
# Stick with top emotion for sentiment
|
148 |
+
sentiment = "NEUTRAL"
|
149 |
+
else:
|
150 |
+
sentiment = "NEUTRAL"
|
151 |
+
|
152 |
return emotions_dict, top_emotion, emotion_map, sentiment
|
153 |
except Exception as e:
|
154 |
st.error(f"Emotion detection failed: {str(e)}")
|
155 |
+
print(f"Exception in emotion detection: {str(e)}")
|
156 |
+
return {}, "neutral", {"neutral": "π"}, "NEUTRAL"
|
157 |
|
158 |
+
# Sarcasm Detection Function with optimizations
|
159 |
@st.cache_resource
|
160 |
def get_sarcasm_classifier():
|
161 |
try:
|
162 |
+
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony",
|
163 |
+
use_fast=True,
|
164 |
+
model_max_length=512)
|
165 |
+
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-irony")
|
166 |
+
model = model.to(device)
|
167 |
+
model.eval() # Set to evaluation mode
|
168 |
+
|
169 |
+
classifier = pipeline("text-classification",
|
170 |
+
model=model,
|
171 |
+
tokenizer=tokenizer,
|
172 |
device=0 if torch.cuda.is_available() else -1)
|
173 |
+
|
174 |
+
# Test the model
|
175 |
+
test_result = classifier("This is totally amazing")
|
176 |
+
print(f"Sarcasm classifier test: {test_result}")
|
177 |
+
|
178 |
return classifier
|
179 |
except Exception as e:
|
180 |
+
print(f"Error loading sarcasm model: {str(e)}")
|
181 |
+
st.error(f"Failed to load sarcasm model. Please check logs.")
|
182 |
return None
|
183 |
|
184 |
+
# Cache sarcasm results
|
185 |
+
@st.cache_data(ttl=600) # Cache for 10 minutes
|
186 |
+
def perform_sarcasm_detection(text: str) -> Tuple[bool, float]:
|
187 |
try:
|
188 |
if not text or len(text.strip()) < 3:
|
189 |
return False, 0.0
|
190 |
+
|
191 |
sarcasm_classifier = get_sarcasm_classifier()
|
192 |
+
if sarcasm_classifier is None:
|
193 |
+
st.error("Sarcasm classifier not available.")
|
194 |
return False, 0.0
|
195 |
+
|
196 |
+
# Handle long text by chunking
|
197 |
+
max_chunk_size = 512
|
198 |
+
if len(text) > max_chunk_size:
|
199 |
+
chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)]
|
200 |
+
# Process chunks and average results
|
201 |
+
sarcasm_scores = []
|
202 |
+
for chunk in chunks:
|
203 |
+
result = sarcasm_classifier(chunk)[0]
|
204 |
+
is_chunk_sarcastic = result['label'] == "LABEL_1"
|
205 |
+
sarcasm_score = result['score'] if is_chunk_sarcastic else 1 - result['score']
|
206 |
+
sarcasm_scores.append((is_chunk_sarcastic, sarcasm_score))
|
207 |
+
|
208 |
+
# Average sarcasm scores
|
209 |
+
total_sarcasm_score = sum(score for _, score in sarcasm_scores)
|
210 |
+
avg_sarcasm_score = total_sarcasm_score / len(sarcasm_scores)
|
211 |
+
# Count sarcastic chunks
|
212 |
+
sarcastic_chunks = sum(1 for is_sarcastic, _ in sarcasm_scores if is_sarcastic)
|
213 |
+
|
214 |
+
# If majority of chunks are sarcastic, classify as sarcastic
|
215 |
+
is_sarcastic = sarcastic_chunks > len(chunks) / 2
|
216 |
+
return is_sarcastic, avg_sarcasm_score
|
217 |
+
else:
|
218 |
+
# Process normally for short text
|
219 |
+
result = sarcasm_classifier(text)[0]
|
220 |
+
is_sarcastic = result['label'] == "LABEL_1"
|
221 |
+
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
|
222 |
+
return is_sarcastic, sarcasm_score
|
223 |
except Exception as e:
|
224 |
st.error(f"Sarcasm detection failed: {str(e)}")
|
225 |
return False, 0.0
|
226 |
|
227 |
+
# Validate audio quality - optimized
|
228 |
+
def validate_audio(audio_path: str) -> bool:
|
229 |
try:
|
230 |
sound = AudioSegment.from_file(audio_path)
|
231 |
+
# Improved audio validation
|
232 |
+
if sound.dBFS < -50: # Slightly relaxed threshold
|
233 |
+
st.warning("Audio volume is low. Please record or upload a louder audio for better results.")
|
234 |
+
return len(sound) > 500 # Still process if at least 0.5 seconds
|
235 |
+
if len(sound) < 500: # Less than 0.5 second
|
236 |
+
st.warning("Audio is very short. Longer audio provides better analysis.")
|
237 |
return False
|
238 |
return True
|
239 |
except Exception as e:
|
240 |
+
st.error(f"Invalid or corrupted audio file: {str(e)}")
|
241 |
return False
|
242 |
|
243 |
+
# Speech Recognition with Whisper - optimized for speed
|
244 |
@st.cache_resource
|
245 |
def load_whisper_model():
|
246 |
try:
|
247 |
+
# Use medium model for better speed/accuracy balance
|
248 |
+
model = whisper.load_model("medium")
|
249 |
return model
|
250 |
except Exception as e:
|
251 |
+
print(f"Error loading Whisper model: {str(e)}")
|
252 |
+
st.error(f"Failed to load Whisper model. Please check logs.")
|
253 |
return None
|
254 |
|
255 |
+
@st.cache_data
|
256 |
+
def transcribe_audio(audio_path: str, show_alternative: bool = False) -> Union[str, Tuple[str, List[str]]]:
|
257 |
try:
|
258 |
+
st.write(f"Processing audio file...")
|
259 |
+
sound = AudioSegment.from_file(audio_path)
|
260 |
+
st.write(f"Audio duration: {len(sound) / 1000:.2f}s")
|
261 |
+
|
262 |
+
# Convert to WAV format (16kHz, mono) for Whisper
|
263 |
+
temp_wav_path = os.path.join(tempfile.gettempdir(), f"temp_converted_{int(time.time())}.wav")
|
264 |
+
# Optimize audio for speech recognition
|
265 |
+
sound = sound.set_frame_rate(16000) # 16kHz is optimal for Whisper
|
266 |
+
sound = sound.set_channels(1)
|
267 |
sound.export(temp_wav_path, format="wav")
|
268 |
+
|
269 |
+
# Load model
|
270 |
model = load_whisper_model()
|
271 |
+
if model is None:
|
272 |
+
return "", [] if show_alternative else ""
|
273 |
+
|
274 |
+
# Transcribe with optimized settings
|
275 |
+
result = model.transcribe(
|
276 |
+
temp_wav_path,
|
277 |
+
language="en",
|
278 |
+
task="transcribe",
|
279 |
+
fp16=torch.cuda.is_available(), # Use fp16 if GPU available
|
280 |
+
beam_size=5 # Slightly larger beam size for better accuracy
|
281 |
+
)
|
282 |
+
|
283 |
+
main_text = result["text"].strip()
|
284 |
+
|
285 |
+
# Clean up
|
286 |
+
if os.path.exists(temp_wav_path):
|
287 |
+
os.remove(temp_wav_path)
|
288 |
+
|
289 |
+
# Return results
|
290 |
+
if show_alternative and "segments" in result:
|
291 |
+
# Create alternative texts by combining segments differently
|
292 |
+
segments = result["segments"]
|
293 |
+
if len(segments) > 1:
|
294 |
+
alternatives = []
|
295 |
+
# Create up to 3 alternatives by varying confidence thresholds
|
296 |
+
for conf in [0.5, 0.7, 0.9]:
|
297 |
+
alt_text = " ".join(seg["text"] for seg in segments if seg["no_speech_prob"] < conf)
|
298 |
+
if alt_text and alt_text != main_text:
|
299 |
+
alternatives.append(alt_text)
|
300 |
+
return main_text, alternatives[:3] # Limit to 3 alternatives
|
301 |
+
|
302 |
+
return (main_text, []) if show_alternative else main_text
|
303 |
except Exception as e:
|
304 |
st.error(f"Transcription failed: {str(e)}")
|
305 |
+
return "", [] if show_alternative else ""
|
|
|
|
|
|
|
306 |
|
307 |
+
# Process uploaded audio files - optimized
|
308 |
+
def process_uploaded_audio(audio_file) -> Optional[str]:
|
309 |
if not audio_file:
|
310 |
return None
|
311 |
+
|
312 |
try:
|
313 |
+
temp_dir = tempfile.gettempdir()
|
314 |
+
|
315 |
+
# Extract extension more safely
|
316 |
+
filename = audio_file.name
|
317 |
+
ext = filename.split('.')[-1].lower() if '.' in filename else ''
|
318 |
+
|
319 |
+
if ext not in ['wav', 'mp3', 'ogg', 'm4a', 'flac']:
|
320 |
+
st.error("Unsupported audio format. Please upload WAV, MP3, OGG, M4A, or FLAC.")
|
321 |
return None
|
322 |
+
|
323 |
+
temp_file_path = os.path.join(temp_dir, f"uploaded_audio_{int(time.time())}.{ext}")
|
324 |
+
|
325 |
with open(temp_file_path, "wb") as f:
|
326 |
f.write(audio_file.getvalue())
|
327 |
+
|
328 |
if not validate_audio(temp_file_path):
|
329 |
+
# We'll still try to process even if validation fails
|
330 |
+
st.warning("Audio may not be optimal quality, but we'll try to process it anyway.")
|
331 |
+
|
332 |
return temp_file_path
|
333 |
except Exception as e:
|
334 |
st.error(f"Error processing uploaded audio: {str(e)}")
|
335 |
return None
|
|
|
|
|
|
|
336 |
|
337 |
# Show model information
|
338 |
def show_model_info():
|
339 |
st.sidebar.header("π§ About the Models")
|
340 |
+
|
341 |
+
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
|
342 |
+
|
343 |
+
with model_tabs[0]:
|
344 |
+
st.markdown("""
|
345 |
+
*Emotion Model*: distilbert-base-uncased-emotion
|
346 |
+
- Fine-tuned for six emotions (joy, anger, disgust, fear, sadness, surprise)
|
347 |
+
- Architecture: DistilBERT base
|
348 |
+
- High accuracy for basic emotion classification
|
349 |
+
[π Model Hub](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
|
350 |
+
""")
|
351 |
+
|
352 |
+
with model_tabs[1]:
|
353 |
+
st.markdown("""
|
354 |
+
*Sarcasm Model*: cardiffnlp/twitter-roberta-base-irony
|
355 |
+
- Trained on SemEval-2018 Task 3 (Twitter irony dataset)
|
356 |
+
- Architecture: RoBERTa base
|
357 |
+
- F1-score: 0.705
|
358 |
+
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
|
359 |
+
""")
|
360 |
+
|
361 |
+
with model_tabs[2]:
|
362 |
st.markdown("""
|
363 |
+
*Speech Recognition*: OpenAI Whisper (medium model)
|
364 |
+
- Optimized for speed and accuracy
|
365 |
+
- Performs well even with background noise and varied accents
|
366 |
+
- Runs locally, no internet required
|
367 |
+
*Tips*: Use good mic, reduce noise, speak clearly
|
368 |
+
[π Model Details](https://github.com/openai/whisper)
|
369 |
""")
|
370 |
|
371 |
+
# Custom audio recorder using HTML/JS - optimized for better user experience
|
372 |
def custom_audio_recorder():
|
373 |
+
st.warning("Browser-based recording requires microphone access and a modern browser. If recording fails, try uploading an audio file instead.")
|
374 |
audio_recorder_html = """
|
375 |
<script>
|
376 |
+
var audioRecorder = {
|
377 |
+
audioBlobs: [],
|
378 |
+
mediaRecorder: null,
|
379 |
+
streamBeingCaptured: null,
|
380 |
+
isRecording: false,
|
381 |
+
recordingTimer: null,
|
382 |
+
recordingDuration: 0,
|
383 |
+
|
384 |
+
start: function() {
|
385 |
+
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
|
386 |
+
document.getElementById('status-message').textContent = "Recording not supported in this browser";
|
387 |
+
return Promise.reject(new Error('mediaDevices API or getUserMedia method is not supported in this browser.'));
|
388 |
+
}
|
389 |
+
else {
|
390 |
+
return navigator.mediaDevices.getUserMedia({
|
391 |
+
audio: {
|
392 |
+
echoCancellation: true,
|
393 |
+
noiseSuppression: true,
|
394 |
+
autoGainControl: true
|
395 |
+
}
|
396 |
+
})
|
397 |
+
.then(stream => {
|
398 |
+
audioRecorder.streamBeingCaptured = stream;
|
399 |
+
|
400 |
+
// Create audio context for visualization
|
401 |
+
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
|
402 |
+
const source = audioContext.createMediaStreamSource(stream);
|
403 |
+
const analyser = audioContext.createAnalyser();
|
404 |
+
analyser.fftSize = 256;
|
405 |
+
source.connect(analyser);
|
406 |
+
|
407 |
+
// Start monitoring audio levels
|
408 |
+
const bufferLength = analyser.frequencyBinCount;
|
409 |
+
const dataArray = new Uint8Array(bufferLength);
|
410 |
+
|
411 |
+
function updateMeter() {
|
412 |
+
if (!audioRecorder.isRecording) return;
|
413 |
+
|
414 |
+
analyser.getByteFrequencyData(dataArray);
|
415 |
+
let sum = 0;
|
416 |
+
for(let i = 0; i < bufferLength; i++) {
|
417 |
+
sum += dataArray[i];
|
418 |
+
}
|
419 |
+
const average = sum / bufferLength;
|
420 |
+
|
421 |
+
// Update volume meter
|
422 |
+
const meter = document.getElementById('volume-meter');
|
423 |
+
if (meter) {
|
424 |
+
const height = Math.min(100, average * 2);
|
425 |
+
meter.style.height = height + '%';
|
426 |
+
}
|
427 |
+
|
428 |
+
requestAnimationFrame(updateMeter);
|
429 |
+
}
|
430 |
+
|
431 |
+
// Setup media recorder with better settings
|
432 |
+
audioRecorder.mediaRecorder = new MediaRecorder(stream, {
|
433 |
+
mimeType: 'audio/webm;codecs=opus',
|
434 |
+
audioBitsPerSecond: 128000
|
435 |
+
});
|
436 |
+
|
437 |
+
audioRecorder.audioBlobs = [];
|
438 |
+
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
|
439 |
+
audioRecorder.audioBlobs.push(event.data);
|
440 |
+
});
|
441 |
+
|
442 |
+
// Start the recording and visualization
|
443 |
+
audioRecorder.mediaRecorder.start(100);
|
444 |
+
audioRecorder.isRecording = true;
|
445 |
+
|
446 |
+
// Start timer
|
447 |
+
audioRecorder.recordingDuration = 0;
|
448 |
+
audioRecorder.recordingTimer = setInterval(() => {
|
449 |
+
audioRecorder.recordingDuration += 1;
|
450 |
+
const timerDisplay = document.getElementById('recording-timer');
|
451 |
+
if (timerDisplay) {
|
452 |
+
const minutes = Math.floor(audioRecorder.recordingDuration / 60);
|
453 |
+
const seconds = audioRecorder.recordingDuration % 60;
|
454 |
+
timerDisplay.textContent = `${minutes.toString().padStart(2, '0')}:${seconds.toString().padStart(2, '0')}`;
|
455 |
+
}
|
456 |
+
}, 1000);
|
457 |
+
|
458 |
+
updateMeter();
|
459 |
+
document.getElementById('status-message').textContent = "Recording...";
|
460 |
+
});
|
461 |
+
}
|
462 |
+
},
|
463 |
+
|
464 |
+
stop: function() {
|
465 |
+
return new Promise(resolve => {
|
466 |
+
let mimeType = audioRecorder.mediaRecorder.mimeType;
|
467 |
+
|
468 |
+
audioRecorder.mediaRecorder.addEventListener("stop", () => {
|
469 |
+
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
|
470 |
+
resolve(audioBlob);
|
471 |
+
audioRecorder.isRecording = false;
|
472 |
+
document.getElementById('status-message').textContent = "Recording stopped";
|
473 |
+
|
474 |
+
// Stop the timer
|
475 |
+
if (audioRecorder.recordingTimer) {
|
476 |
+
clearInterval(audioRecorder.recordingTimer);
|
477 |
+
}
|
478 |
+
});
|
479 |
+
|
480 |
+
audioRecorder.mediaRecorder.stop();
|
481 |
+
audioRecorder.stopStream();
|
482 |
+
audioRecorder.resetRecordingProperties();
|
483 |
+
});
|
484 |
+
},
|
485 |
+
|
486 |
+
stopStream: function() {
|
487 |
+
audioRecorder.streamBeingCaptured.getTracks()
|
488 |
+
.forEach(track => track.stop());
|
489 |
+
},
|
490 |
+
|
491 |
+
resetRecordingProperties: function() {
|
492 |
+
audioRecorder.mediaRecorder = null;
|
493 |
+
audioRecorder.streamBeingCaptured = null;
|
494 |
+
}
|
495 |
}
|
496 |
+
|
497 |
+
var isRecording = false;
|
498 |
+
|
499 |
function toggleRecording() {
|
500 |
+
var recordButton = document.getElementById('record-button');
|
501 |
+
var statusMessage = document.getElementById('status-message');
|
502 |
+
var volumeMeter = document.getElementById('volume-meter');
|
503 |
+
var recordingTimer = document.getElementById('recording-timer');
|
504 |
+
|
505 |
+
if (!isRecording) {
|
506 |
+
audioRecorder.start()
|
507 |
+
.then(() => {
|
508 |
+
isRecording = true;
|
509 |
+
recordButton.textContent = 'Stop Recording';
|
510 |
+
recordButton.classList.add('recording');
|
511 |
+
volumeMeter.style.display = 'block';
|
512 |
+
recordingTimer.style.display = 'block';
|
513 |
+
})
|
514 |
+
.catch(error => {
|
515 |
+
statusMessage.textContent = 'Error: ' + error.message;
|
516 |
+
});
|
517 |
+
} else {
|
518 |
+
audioRecorder.stop()
|
519 |
+
.then(audioBlob => {
|
520 |
+
const audioUrl = URL.createObjectURL(audioBlob);
|
521 |
+
var audioElement = document.getElementById('audio-playback');
|
522 |
+
audioElement.src = audioUrl;
|
523 |
+
audioElement.style.display = 'block';
|
524 |
+
|
525 |
+
const reader = new FileReader();
|
526 |
+
reader.readAsDataURL(audioBlob);
|
527 |
+
reader.onloadend = function() {
|
528 |
+
const base64data = reader.result;
|
529 |
+
var audioData = document.getElementById('audio-data');
|
530 |
+
audioData.value = base64data;
|
531 |
+
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
|
532 |
+
window.parent.postMessage(streamlitMessage, "*");
|
533 |
+
}
|
534 |
+
|
535 |
+
isRecording = false;
|
536 |
+
recordButton.textContent = 'Start Recording';
|
537 |
+
recordButton.classList.remove('recording');
|
538 |
+
volumeMeter.style.display = 'none';
|
539 |
+
volumeMeter.style.height = '0%';
|
540 |
+
});
|
541 |
+
}
|
542 |
}
|
543 |
+
|
544 |
+
document.addEventListener('DOMContentLoaded', function() {
|
545 |
+
var recordButton = document.getElementById('record-button');
|
546 |
+
recordButton.addEventListener('click', toggleRecording);
|
547 |
+
});
|
548 |
</script>
|
549 |
+
|
550 |
+
<div class="audio-recorder-container">
|
551 |
+
<button id="record-button" class="record-button">Start Recording</button>
|
552 |
+
<div id="status-message" class="status-message">Ready to record</div>
|
553 |
+
|
554 |
+
<div class="recording-info">
|
555 |
+
<div class="volume-meter-container">
|
556 |
+
<div id="volume-meter" class="volume-meter"></div>
|
557 |
+
</div>
|
558 |
+
<div id="recording-timer" class="recording-timer">00:00</div>
|
559 |
+
</div>
|
560 |
+
|
561 |
+
<audio id="audio-playback" controls style="display:none; margin-top:10px; width:100%;"></audio>
|
562 |
+
<input type="hidden" id="audio-data" name="audio-data">
|
563 |
+
</div>
|
564 |
+
|
565 |
<style>
|
566 |
+
.audio-recorder-container {
|
567 |
+
display: flex;
|
568 |
+
flex-direction: column;
|
569 |
+
align-items: center;
|
570 |
+
padding: 15px;
|
571 |
+
border-radius: 8px;
|
572 |
+
background-color: #f7f7f7;
|
573 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
574 |
+
}
|
575 |
+
|
576 |
+
.record-button {
|
577 |
background-color: #f63366;
|
578 |
color: white;
|
579 |
border: none;
|
580 |
+
padding: 12px 24px;
|
581 |
+
border-radius: 24px;
|
582 |
cursor: pointer;
|
583 |
+
font-size: 16px;
|
584 |
+
font-weight: bold;
|
585 |
+
transition: all 0.3s ease;
|
586 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
|
587 |
}
|
588 |
+
|
589 |
+
.record-button:hover {
|
590 |
+
background-color: #e62958;
|
591 |
+
transform: translateY(-2px);
|
592 |
+
}
|
593 |
+
|
594 |
+
.record-button.recording {
|
595 |
background-color: #ff0000;
|
596 |
+
animation: pulse 1.5s infinite;
|
597 |
+
}
|
598 |
+
|
599 |
+
.status-message {
|
600 |
+
margin-top: 10px;
|
601 |
+
font-size: 14px;
|
602 |
+
color: #666;
|
603 |
+
}
|
604 |
+
|
605 |
+
.recording-info {
|
606 |
+
display: flex;
|
607 |
+
align-items: center;
|
608 |
+
margin-top: 15px;
|
609 |
+
width: 100%;
|
610 |
+
justify-content: center;
|
611 |
+
}
|
612 |
+
|
613 |
+
.volume-meter-container {
|
614 |
+
width: 20px;
|
615 |
+
height: 60px;
|
616 |
+
background-color: #ddd;
|
617 |
+
border-radius: 3px;
|
618 |
+
overflow: hidden;
|
619 |
+
position: relative;
|
620 |
+
}
|
621 |
+
|
622 |
+
.volume-meter {
|
623 |
+
width: 100%;
|
624 |
+
height: 0%;
|
625 |
+
background-color: #f63366;
|
626 |
+
position: absolute;
|
627 |
+
bottom: 0;
|
628 |
+
transition: height 0.1s ease;
|
629 |
+
display: none;
|
630 |
+
}
|
631 |
+
|
632 |
+
.recording-timer {
|
633 |
+
margin-left: 15px;
|
634 |
+
font-family: monospace;
|
635 |
+
font-size: 18px;
|
636 |
+
color: #f63366;
|
637 |
+
display: none;
|
638 |
+
}
|
639 |
+
|
640 |
+
@keyframes pulse {
|
641 |
+
0% { opacity: 1; box-shadow: 0 0 0 0 rgba(255,0,0,0.7); }
|
642 |
+
50% { opacity: 0.8; box-shadow: 0 0 0 10px rgba(255,0,0,0); }
|
643 |
+
100% { opacity: 1; box-shadow: 0 0 0 0 rgba(255,0,0,0); }
|
644 |
}
|
645 |
</style>
|
646 |
"""
|
|
|
647 |
|
648 |
+
return components.html(audio_recorder_html, height=220)
|
649 |
+
|
650 |
+
# Function to display analysis results - optimized
|
651 |
def display_analysis_results(transcribed_text):
|
652 |
+
st.session_state.debug_info = st.session_state.get('debug_info', [])
|
653 |
+
st.session_state.debug_info.append(f"Processing text: {transcribed_text[:50]}...")
|
654 |
+
st.session_state.debug_info = st.session_state.debug_info[-100:] # Keep last 100 entries
|
655 |
+
|
656 |
+
# Run emotion and sarcasm detection in parallel
|
657 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
658 |
+
emotion_future = executor.submit(perform_emotion_detection, transcribed_text)
|
659 |
+
sarcasm_future = executor.submit(perform_sarcasm_detection, transcribed_text)
|
660 |
+
|
661 |
+
emotions_dict, top_emotion, emotion_map, sentiment = emotion_future.result()
|
662 |
+
is_sarcastic, sarcasm_score = sarcasm_future.result()
|
663 |
+
|
664 |
+
# Add results to debug info
|
665 |
+
st.session_state.debug_info.append(f"Top emotion: {top_emotion}, Sentiment: {sentiment}")
|
666 |
+
st.session_state.debug_info.append(f"Sarcasm: {is_sarcastic}, Score: {sarcasm_score:.3f}")
|
667 |
+
|
668 |
+
st.header("Transcribed Text")
|
669 |
+
st.text_area("Text", transcribed_text, height=120, disabled=True,
|
670 |
+
help="The audio converted to text. The text was processed for emotion and sentiment analysis.")
|
671 |
+
|
672 |
+
# Improved confidence estimation
|
673 |
+
words = transcribed_text.split()
|
674 |
+
word_count = len(words)
|
675 |
+
confidence_score = min(0.98, max(0.75, 0.75 + (word_count / 100) * 0.2))
|
676 |
+
|
677 |
+
st.caption(f"Estimated transcription confidence: {confidence_score:.2f}")
|
678 |
+
|
679 |
st.header("Analysis Results")
|
|
|
680 |
col1, col2 = st.columns([1, 2])
|
681 |
+
|
682 |
with col1:
|
683 |
st.subheader("Sentiment")
|
684 |
+
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π" if sentiment == "MIXED" else "π"
|
685 |
+
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
|
686 |
+
st.info("Sentiment reflects the dominant emotion's tone and context.")
|
687 |
+
|
688 |
st.subheader("Sarcasm")
|
689 |
sarcasm_icon = "π" if is_sarcastic else "π"
|
690 |
+
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
|
691 |
+
st.markdown(f"**{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
|
692 |
+
|
693 |
+
# More informative sarcasm info
|
694 |
+
if is_sarcastic:
|
695 |
+
if sarcasm_score > 0.8:
|
696 |
+
st.info("High confidence in sarcasm detection.")
|
697 |
+
else:
|
698 |
+
st.info("Moderate confidence in sarcasm detection.")
|
699 |
+
else:
|
700 |
+
st.info("No clear indicators of sarcasm found.")
|
701 |
+
|
702 |
with col2:
|
703 |
st.subheader("Emotions")
|
704 |
if emotions_dict:
|
705 |
+
st.markdown(
|
706 |
+
f"*Dominant:* {emotion_map.get(top_emotion, 'β')} {top_emotion.capitalize()} (Score: {emotions_dict[top_emotion]:.3f})")
|
707 |
+
|
708 |
+
# Enhanced visualization
|
709 |
+
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
|
710 |
+
significant_emotions = [(e, s) for e, s in sorted_emotions if s > 0.05] # Only show significant emotions
|
711 |
+
|
712 |
+
if significant_emotions:
|
713 |
+
emotions = [e[0] for e in significant_emotions]
|
714 |
+
scores = [e[1] for e in significant_emotions]
|
715 |
+
|
716 |
+
# Use a color scale that helps distinguish emotions better
|
717 |
+
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'},
|
718 |
+
title="Emotion Distribution", color=emotions,
|
719 |
+
color_discrete_sequence=px.colors.qualitative.Bold)
|
720 |
+
|
721 |
+
fig.update_layout(
|
722 |
+
yaxis_range=[0, 1],
|
723 |
+
showlegend=False,
|
724 |
+
title_font_size=14,
|
725 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
726 |
+
xaxis_title="Emotion",
|
727 |
+
yaxis_title="Confidence Score",
|
728 |
+
bargap=0.3
|
729 |
+
)
|
730 |
+
|
731 |
+
# Add horizontal reference line for minimal significance
|
732 |
+
fig.add_shape(
|
733 |
+
type="line",
|
734 |
+
x0=-0.5,
|
735 |
+
x1=len(emotions) - 0.5,
|
736 |
+
y0=0.1,
|
737 |
+
y1=0.1,
|
738 |
+
line=dict(color="gray", width=1, dash="dot")
|
739 |
+
)
|
740 |
+
|
741 |
+
st.plotly_chart(fig, use_container_width=True)
|
742 |
+
else:
|
743 |
+
st.write("No significant emotions detected.")
|
744 |
else:
|
745 |
st.write("No emotions detected.")
|
746 |
|
747 |
+
# Expert analysis section (new feature while maintaining UI)
|
748 |
+
with st.expander("Expert Analysis", expanded=False):
|
749 |
+
col1, col2 = st.columns(2)
|
750 |
+
|
751 |
+
with col1:
|
752 |
+
st.subheader("Emotion Insights")
|
753 |
+
# Provide more insightful analysis based on emotion combinations
|
754 |
+
if emotions_dict:
|
755 |
+
top_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)[:3]
|
756 |
+
|
757 |
+
if len(top_emotions) >= 2:
|
758 |
+
emotion1, score1 = top_emotions[0]
|
759 |
+
emotion2, score2 = top_emotions[1]
|
760 |
+
|
761 |
+
if score2 > 0.7 * score1: # If second emotion is close to first
|
762 |
+
st.markdown(f"**Mixed emotional state detected:** {emotion_map.get(emotion1, '')} {emotion1} + {emotion_map.get(emotion2, '')} {emotion2}")
|
763 |
+
|
764 |
+
# Analyze specific combinations
|
765 |
+
if (emotion1 == "joy" and emotion2 == "surprise") or (emotion1 == "surprise" and emotion2 == "joy"):
|
766 |
+
st.write("π‘ This indicates excitement or delight")
|
767 |
+
elif (emotion1 == "sadness" and emotion2 == "anger") or (emotion1 == "anger" and emotion2 == "sadness"):
|
768 |
+
st.write("π‘ This suggests frustration or disappointment")
|
769 |
+
elif (emotion1 == "fear" and emotion2 == "surprise") or (emotion1 == "surprise" and emotion2 == "fear"):
|
770 |
+
st.write("π‘ This indicates shock or alarm")
|
771 |
+
else:
|
772 |
+
st.markdown(f"**Clear emotional state:** {emotion_map.get(emotion1, '')} {emotion1}")
|
773 |
+
else:
|
774 |
+
st.write("Single dominant emotion detected.")
|
775 |
+
else:
|
776 |
+
st.write("No significant emotional patterns detected.")
|
777 |
+
|
778 |
+
with col2:
|
779 |
+
st.subheader("Context Analysis")
|
780 |
+
# Analyze the context based on combination of sentiment and sarcasm
|
781 |
+
if is_sarcastic and sentiment == "POSITIVE":
|
782 |
+
st.markdown("β οΈ **Potential Negative Connotation:** The positive sentiment might be misleading due to detected sarcasm.")
|
783 |
+
elif is_sarcastic and sentiment == "NEGATIVE":
|
784 |
+
st.markdown("β οΈ **Complex Expression:** Negative sentiment combined with sarcasm may indicate frustrated humor or ironic criticism.")
|
785 |
+
elif sentiment == "MIXED":
|
786 |
+
st.markdown("π **Ambivalent Message:** The content expresses mixed or conflicting emotions.")
|
787 |
+
elif sentiment == "POSITIVE" and sarcasm_score > 0.3:
|
788 |
+
st.markdown("β οΈ **Moderate Sarcasm Indicators:** The positive sentiment might be qualified by subtle sarcasm.")
|
789 |
+
elif sentiment == "NEGATIVE" and not is_sarcastic:
|
790 |
+
st.markdown("π **Clear Negative Expression:** The content expresses genuine negative sentiment without sarcasm.")
|
791 |
+
elif sentiment == "POSITIVE" and not is_sarcastic:
|
792 |
+
st.markdown("π **Clear Positive Expression:** The content expresses genuine positive sentiment without sarcasm.")
|
793 |
+
|
794 |
+
# Original debug expander (maintained from original code)
|
795 |
+
with st.expander("Debug Information", expanded=False):
|
796 |
+
st.write("Debugging information for troubleshooting:")
|
797 |
+
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
|
798 |
+
st.text(f"{i + 1}. {debug_line}")
|
799 |
+
if emotions_dict:
|
800 |
+
st.write("Raw emotion scores:")
|
801 |
+
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
|
802 |
+
if score > 0.01: # Only show non-negligible scores
|
803 |
+
st.text(f"{emotion}: {score:.4f}")
|
804 |
+
|
805 |
+
# Original analysis details expander (maintained from original code)
|
806 |
+
with st.expander("Analysis Details", expanded=False):
|
807 |
+
st.write("""
|
808 |
+
*How this works:*
|
809 |
+
1. *Speech Recognition*: Audio transcribed using OpenAI Whisper
|
810 |
+
2. *Emotion Analysis*: DistilBERT model trained for six emotions
|
811 |
+
3. *Sentiment Analysis*: Derived from dominant emotion
|
812 |
+
4. *Sarcasm Detection*: RoBERTa model for irony detection
|
813 |
+
*Accuracy depends on*:
|
814 |
+
- Audio quality
|
815 |
+
- Speech clarity
|
816 |
+
- Background noise
|
817 |
+
- Speech patterns
|
818 |
+
""")
|
819 |
+
|
820 |
+
# Process base64 audio data - optimized
|
821 |
def process_base64_audio(base64_data):
|
|
|
822 |
try:
|
823 |
+
# Ensure we have proper base64 data
|
824 |
+
if not base64_data or not isinstance(base64_data, str) or not base64_data.startswith('data:'):
|
825 |
+
st.error("Invalid audio data received")
|
826 |
+
return None
|
827 |
+
|
828 |
+
# Extract the base64 binary part
|
829 |
+
try:
|
830 |
+
base64_binary = base64_data.split(',')[1]
|
831 |
+
except IndexError:
|
832 |
+
st.error("Invalid base64 data format")
|
833 |
+
return None
|
834 |
+
|
835 |
+
# Decode the binary data
|
836 |
+
try:
|
837 |
+
binary_data = base64.b64decode(base64_binary)
|
838 |
+
except Exception as e:
|
839 |
+
st.error(f"Failed to decode base64 data: {str(e)}")
|
840 |
+
return None
|
841 |
+
|
842 |
+
# Create a temporary file
|
843 |
+
temp_dir = tempfile.gettempdir()
|
844 |
+
temp_file_path = os.path.join(temp_dir, f"recording_{int(time.time())}.wav")
|
845 |
+
|
846 |
+
# Write the binary data to the file
|
847 |
with open(temp_file_path, "wb") as f:
|
848 |
+
f.write(binary_data)
|
849 |
+
|
850 |
+
# Validate the audio file
|
851 |
if not validate_audio(temp_file_path):
|
852 |
+
st.warning("Audio quality may not be optimal, but we'll try to process it.")
|
853 |
+
|
854 |
return temp_file_path
|
855 |
except Exception as e:
|
856 |
+
st.error(f"Error processing audio data: {str(e)}")
|
857 |
return None
|
|
|
|
|
|
|
858 |
|
859 |
+
# Preload models in background to improve performance
|
860 |
+
def preload_models():
|
861 |
+
threading.Thread(target=load_whisper_model).start()
|
862 |
+
threading.Thread(target=get_emotion_classifier).start()
|
863 |
+
threading.Thread(target=get_sarcasm_classifier).start()
|
864 |
+
|
865 |
+
# Main App Logic - optimized
|
866 |
def main():
|
867 |
+
# Initialize session state
|
868 |
if 'debug_info' not in st.session_state:
|
869 |
st.session_state.debug_info = []
|
870 |
+
if 'models_loaded' not in st.session_state:
|
871 |
+
st.session_state.models_loaded = False
|
872 |
+
|
873 |
+
# Preload models in background
|
874 |
+
if not st.session_state.models_loaded:
|
875 |
+
preload_models()
|
876 |
+
st.session_state.models_loaded = True
|
877 |
+
|
878 |
+
# Create tabs
|
879 |
tab1, tab2 = st.tabs(["π Upload Audio", "π Record Audio"])
|
880 |
+
|
881 |
with tab1:
|
882 |
st.header("Upload an Audio File")
|
883 |
+
audio_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg", "m4a", "flac"],
|
884 |
+
help="Upload an audio file for sentiment analysis (WAV, MP3, OGG, M4A, FLAC)")
|
885 |
+
|
886 |
if audio_file:
|
887 |
st.audio(audio_file.getvalue())
|
888 |
+
st.caption("π§ Uploaded Audio Playback")
|
889 |
+
|
890 |
+
# Add a placeholder for progress updates
|
891 |
+
progress_placeholder = st.empty()
|
892 |
+
|
893 |
+
# Add analyze button
|
894 |
+
upload_button = st.button("Analyze Upload", key="analyze_upload")
|
895 |
+
|
896 |
+
if upload_button:
|
897 |
+
# Show progress bar
|
898 |
+
progress_bar = progress_placeholder.progress(0, text="Preparing audio...")
|
899 |
+
|
900 |
+
# Process audio
|
901 |
+
temp_audio_path = process_uploaded_audio(audio_file)
|
902 |
+
|
903 |
+
if temp_audio_path:
|
904 |
+
# Update progress
|
905 |
+
progress_bar.progress(25, text="Transcribing audio...")
|
906 |
+
|
907 |
+
# Transcribe audio
|
908 |
+
main_text, alternatives = transcribe_audio(temp_audio_path, show_alternative=True)
|
909 |
+
|
910 |
+
if main_text:
|
911 |
+
# Update progress
|
912 |
+
progress_bar.progress(60, text="Analyzing sentiment and emotions...")
|
913 |
+
|
914 |
+
# Display alternatives if available
|
915 |
+
if alternatives:
|
916 |
+
with st.expander("Alternative transcriptions detected", expanded=False):
|
917 |
+
for i, alt in enumerate(alternatives[:3], 1):
|
918 |
+
st.write(f"{i}. {alt}")
|
919 |
+
|
920 |
+
# Final analysis
|
921 |
+
progress_bar.progress(90, text="Finalizing results...")
|
922 |
+
display_analysis_results(main_text)
|
923 |
+
|
924 |
+
# Complete progress
|
925 |
+
progress_bar.progress(100, text="Analysis complete!")
|
926 |
+
progress_placeholder.empty()
|
927 |
+
else:
|
928 |
+
progress_placeholder.empty()
|
929 |
+
st.error("Could not transcribe the audio. Please try again with clearer audio.")
|
930 |
+
|
931 |
+
# Clean up temp file
|
932 |
+
if os.path.exists(temp_audio_path):
|
933 |
+
os.remove(temp_audio_path)
|
934 |
+
else:
|
935 |
+
progress_placeholder.empty()
|
936 |
+
st.error("Could not process the audio file. Please try a different file.")
|
937 |
+
|
938 |
with tab2:
|
939 |
st.header("Record Your Voice")
|
940 |
+
st.write("Use the recorder below to analyze your speech in real-time.")
|
941 |
+
|
942 |
+
# Browser recorder
|
943 |
st.subheader("Browser-Based Recorder")
|
944 |
+
st.write("Click the button below to start/stop recording.")
|
945 |
+
|
946 |
audio_data = custom_audio_recorder()
|
947 |
+
|
948 |
+
if audio_data:
|
949 |
+
# Add a placeholder for progress updates
|
950 |
+
progress_placeholder = st.empty()
|
951 |
+
|
952 |
+
# Add analyze button
|
953 |
+
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
|
954 |
+
|
955 |
+
if analyze_rec_button:
|
956 |
+
# Show progress bar
|
957 |
+
progress_bar = progress_placeholder.progress(0, text="Processing recording...")
|
958 |
+
|
959 |
+
# Process the recording
|
960 |
temp_audio_path = process_base64_audio(audio_data)
|
961 |
+
|
962 |
if temp_audio_path:
|
963 |
+
# Update progress
|
964 |
+
progress_bar.progress(30, text="Transcribing speech...")
|
965 |
+
|
966 |
+
# Transcribe the audio
|
967 |
transcribed_text = transcribe_audio(temp_audio_path)
|
968 |
+
|
969 |
if transcribed_text:
|
970 |
+
# Update progress
|
971 |
+
progress_bar.progress(70, text="Analyzing sentiment and emotions...")
|
972 |
+
|
973 |
+
# Display the results
|
974 |
display_analysis_results(transcribed_text)
|
975 |
+
|
976 |
+
# Complete progress
|
977 |
+
progress_bar.progress(100, text="Analysis complete!")
|
978 |
+
progress_placeholder.empty()
|
979 |
else:
|
980 |
+
progress_placeholder.empty()
|
981 |
+
st.error("Could not transcribe the audio. Please try speaking more clearly.")
|
982 |
+
|
983 |
+
# Clean up temp file
|
984 |
+
if os.path.exists(temp_audio_path):
|
985 |
+
os.remove(temp_audio_path)
|
986 |
+
else:
|
987 |
+
progress_placeholder.empty()
|
988 |
+
st.error("Could not process the recording. Please try again.")
|
989 |
+
|
990 |
+
# Text input option
|
991 |
st.subheader("Manual Text Input")
|
992 |
+
st.write("If recording doesn't work, you can type your text here:")
|
993 |
+
|
994 |
+
manual_text = st.text_area("Enter text to analyze:", placeholder="Type what you want to analyze...")
|
995 |
+
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
|
996 |
+
|
997 |
+
if analyze_text_button and manual_text:
|
998 |
+
with st.spinner("Analyzing text..."):
|
999 |
+
display_analysis_results(manual_text)
|
1000 |
+
|
1001 |
+
# Show model information
|
1002 |
show_model_info()
|
1003 |
+
|
1004 |
+
# Add a small footer with version info
|
1005 |
+
st.sidebar.markdown("---")
|
1006 |
+
st.sidebar.caption("Voice Sentiment Analysis v2.0")
|
1007 |
+
st.sidebar.caption("Optimized for speed and accuracy")
|
1008 |
|
1009 |
if __name__ == "__main__":
|
1010 |
main()
|