Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,19 @@ import streamlit as st
|
|
3 |
import tempfile
|
4 |
import torch
|
5 |
import transformers
|
6 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
import plotly.express as px
|
8 |
import logging
|
9 |
import warnings
|
10 |
import whisper
|
11 |
from pydub import AudioSegment
|
12 |
import time
|
13 |
-
import
|
|
|
|
|
|
|
|
|
14 |
import io
|
15 |
-
import streamlit.components.v1 as components
|
16 |
|
17 |
# Suppress warnings for a clean console
|
18 |
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
@@ -25,100 +28,98 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
25 |
print(f"Using device: {device}")
|
26 |
|
27 |
# Set Streamlit app layout
|
28 |
-
st.set_page_config(layout="wide", page_title="Voice
|
29 |
|
30 |
# Interface design
|
31 |
-
st.title("ποΈ Voice
|
32 |
-
st.write("
|
33 |
|
34 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
@st.cache_resource
|
36 |
-
def
|
37 |
tokenizer = AutoTokenizer.from_pretrained("SamLowe/roberta-base-go_emotions", use_fast=True)
|
38 |
model = AutoModelForSequenceClassification.from_pretrained("SamLowe/roberta-base-go_emotions")
|
39 |
model = model.to(device)
|
40 |
return pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None, device=-1 if device.type == "cpu" else 0)
|
41 |
|
42 |
-
def
|
43 |
try:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
"desire": "π", "disappointment": "π", "disapproval": "π", "disgust": "π€’",
|
54 |
-
"embarrassment": "π³", "excitement": "π€©", "fear": "π¨", "gratitude": "π",
|
55 |
-
"grief": "π’", "joy": "π", "love": "β€οΈ", "nervousness": "π°",
|
56 |
-
"optimism": "π", "pride": "π", "realization": "π‘", "relief": "π",
|
57 |
-
"remorse": "π", "sadness": "π", "surprise": "π²", "neutral": "π"
|
58 |
-
}
|
59 |
-
|
60 |
-
positive_emotions = ["admiration", "amusement", "approval", "caring", "desire",
|
61 |
-
"excitement", "gratitude", "joy", "love", "optimism", "pride", "relief"]
|
62 |
-
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust",
|
63 |
-
"embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
|
64 |
-
neutral_emotions = ["confusion", "curiosity", "realization", "surprise", "neutral"]
|
65 |
-
|
66 |
-
# Fix 1: Create a clean emotions dictionary from results
|
67 |
-
emotions_dict = {}
|
68 |
-
for result in emotion_results:
|
69 |
-
emotions_dict[result['label']] = result['score']
|
70 |
-
|
71 |
-
# Fix 2: Filter out very low scores (below threshold)
|
72 |
-
filtered_emotions = {k: v for k, v in emotions_dict.items() if v > 0.05}
|
73 |
-
|
74 |
-
# If filtered dictionary is empty, fall back to original
|
75 |
-
if not filtered_emotions:
|
76 |
-
filtered_emotions = emotions_dict
|
77 |
-
|
78 |
-
# Fix 3: Make sure we properly find the top emotion
|
79 |
-
top_emotion = max(filtered_emotions, key=filtered_emotions.get)
|
80 |
-
top_score = filtered_emotions[top_emotion]
|
81 |
-
|
82 |
-
# Fix 4: More robust sentiment assignment
|
83 |
-
if top_emotion in positive_emotions:
|
84 |
-
sentiment = "POSITIVE"
|
85 |
-
elif top_emotion in negative_emotions:
|
86 |
-
sentiment = "NEGATIVE"
|
87 |
-
else:
|
88 |
-
# If the top emotion is neutral but there are strong competing emotions, use them
|
89 |
-
competing_emotions = sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]
|
90 |
-
|
91 |
-
# Check if there's a close second non-neutral emotion
|
92 |
-
if len(competing_emotions) > 1:
|
93 |
-
if (competing_emotions[0][0] in neutral_emotions and
|
94 |
-
competing_emotions[1][0] not in neutral_emotions and
|
95 |
-
competing_emotions[1][1] > 0.7 * competing_emotions[0][1]):
|
96 |
-
# Use the second strongest emotion instead
|
97 |
-
top_emotion = competing_emotions[1][0]
|
98 |
-
if top_emotion in positive_emotions:
|
99 |
-
sentiment = "POSITIVE"
|
100 |
-
elif top_emotion in negative_emotions:
|
101 |
-
sentiment = "NEGATIVE"
|
102 |
-
else:
|
103 |
-
sentiment = "NEUTRAL"
|
104 |
-
else:
|
105 |
-
sentiment = "NEUTRAL"
|
106 |
-
else:
|
107 |
-
sentiment = "NEUTRAL"
|
108 |
-
|
109 |
-
# Log for debugging
|
110 |
-
print(f"Text: {text[:50]}...")
|
111 |
-
print(f"Top 3 emotions: {sorted(filtered_emotions.items(), key=lambda x: x[1], reverse=True)[:3]}")
|
112 |
-
print(f"Selected top emotion: {top_emotion} ({filtered_emotions.get(top_emotion, 0):.3f})")
|
113 |
-
print(f"Sentiment determined: {sentiment}")
|
114 |
-
|
115 |
-
return emotions_dict, top_emotion, emotion_map, sentiment
|
116 |
except Exception as e:
|
117 |
-
st.error(f"
|
118 |
-
|
119 |
-
return {}, "neutral", {}, "NEUTRAL"
|
120 |
|
121 |
-
# Sarcasm Detection
|
122 |
@st.cache_resource
|
123 |
def get_sarcasm_classifier():
|
124 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony", use_fast=True)
|
@@ -128,11 +129,8 @@ def get_sarcasm_classifier():
|
|
128 |
|
129 |
def perform_sarcasm_detection(text):
|
130 |
try:
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
sarcasm_classifier = get_sarcasm_classifier()
|
135 |
-
result = sarcasm_classifier(text)[0]
|
136 |
is_sarcastic = result['label'] == "LABEL_1"
|
137 |
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
|
138 |
return is_sarcastic, sarcasm_score
|
@@ -140,415 +138,198 @@ def perform_sarcasm_detection(text):
|
|
140 |
st.error(f"Sarcasm detection failed: {str(e)}")
|
141 |
return False, 0.0
|
142 |
|
143 |
-
# Validate
|
144 |
def validate_audio(audio_path):
|
145 |
try:
|
146 |
sound = AudioSegment.from_file(audio_path)
|
147 |
-
if sound.dBFS < -50:
|
148 |
-
st.warning("Audio volume
|
149 |
-
return False
|
150 |
-
if len(sound) < 1000: # Less than 1 second
|
151 |
-
st.warning("Audio is too short. Please record a longer audio.")
|
152 |
return False
|
153 |
return True
|
154 |
-
except:
|
155 |
st.error("Invalid or corrupted audio file.")
|
156 |
return False
|
157 |
|
158 |
# Speech Recognition with Whisper
|
159 |
@st.cache_resource
|
160 |
def load_whisper_model():
|
161 |
-
|
162 |
-
model = whisper.load_model("large-v3")
|
163 |
-
return model
|
164 |
|
165 |
-
def transcribe_audio(audio_path
|
166 |
try:
|
167 |
-
st.write(f"Processing audio file: {audio_path}")
|
168 |
sound = AudioSegment.from_file(audio_path)
|
169 |
-
st.write(f"Audio duration: {len(sound)/1000:.2f}s, Sample rate: {sound.frame_rate}, Channels: {sound.channels}")
|
170 |
-
|
171 |
-
# Convert to WAV format (16kHz, mono) for Whisper
|
172 |
temp_wav_path = os.path.join(tempfile.gettempdir(), "temp_converted.wav")
|
173 |
-
sound = sound.set_frame_rate(16000)
|
174 |
-
sound = sound.set_channels(1)
|
175 |
sound.export(temp_wav_path, format="wav")
|
176 |
-
|
177 |
-
# Load Whisper model
|
178 |
model = load_whisper_model()
|
179 |
-
|
180 |
-
# Transcribe audio
|
181 |
result = model.transcribe(temp_wav_path, language="en")
|
182 |
-
|
183 |
-
|
184 |
-
# Clean up
|
185 |
-
if os.path.exists(temp_wav_path):
|
186 |
-
os.remove(temp_wav_path)
|
187 |
-
|
188 |
-
# Whisper doesn't provide alternatives, so return empty list
|
189 |
-
if show_alternative:
|
190 |
-
return main_text, []
|
191 |
-
return main_text
|
192 |
except Exception as e:
|
193 |
st.error(f"Transcription failed: {str(e)}")
|
194 |
-
return ""
|
195 |
|
196 |
-
#
|
197 |
-
def
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
with open(temp_file_path, "wb") as f:
|
206 |
-
f.write(audio_file.getvalue())
|
207 |
-
|
208 |
-
if not validate_audio(temp_file_path):
|
209 |
-
return None
|
210 |
-
|
211 |
return temp_file_path
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
return None
|
|
|
215 |
|
216 |
-
#
|
217 |
-
def
|
218 |
-
st.
|
219 |
-
|
220 |
-
model_tabs = st.sidebar.tabs(["Emotion", "Sarcasm", "Speech"])
|
221 |
-
|
222 |
-
with model_tabs[0]:
|
223 |
-
st.markdown("""
|
224 |
-
**Emotion Model**: SamLowe/roberta-base-go_emotions
|
225 |
-
- Fine-tuned on GoEmotions dataset (58k Reddit comments, 27 emotions)
|
226 |
-
- Architecture: RoBERTa base
|
227 |
-
- Micro-F1: 0.46
|
228 |
-
[π Model Hub](https://huggingface.co/SamLowe/roberta-base-go_emotions)
|
229 |
-
""")
|
230 |
-
|
231 |
-
with model_tabs[1]:
|
232 |
-
st.markdown("""
|
233 |
-
**Sarcasm Model**: cardiffnlp/twitter-roberta-base-irony
|
234 |
-
- Trained on SemEval-2018 Task 3 (Twitter irony dataset)
|
235 |
-
- Architecture: RoBERTa base
|
236 |
-
- F1-score: 0.705
|
237 |
-
[π Model Hub](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony)
|
238 |
-
""")
|
239 |
-
|
240 |
-
with model_tabs[2]:
|
241 |
-
st.markdown("""
|
242 |
-
**Speech Recognition**: OpenAI Whisper (large-v3)
|
243 |
-
- State-of-the-art model for speech-to-text
|
244 |
-
- Accuracy: ~5-10% WER on clean English audio
|
245 |
-
- Robust to noise, accents, and varied conditions
|
246 |
-
- Runs locally, no internet required
|
247 |
-
**Tips**: Use good mic, reduce noise, speak clearly
|
248 |
-
[π Model Details](https://github.com/openai/whisper)
|
249 |
-
""")
|
250 |
|
251 |
-
#
|
252 |
-
|
253 |
-
|
254 |
-
<script>
|
255 |
-
var audioRecorder = {
|
256 |
-
audioBlobs: [],
|
257 |
-
mediaRecorder: null,
|
258 |
-
streamBeingCaptured: null,
|
259 |
-
start: function() {
|
260 |
-
if (!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia)) {
|
261 |
-
return Promise.reject(new Error('mediaDevices API or getUserMedia method is not supported in this browser.'));
|
262 |
-
}
|
263 |
-
else {
|
264 |
-
return navigator.mediaDevices.getUserMedia({ audio: true })
|
265 |
-
.then(stream => {
|
266 |
-
audioRecorder.streamBeingCaptured = stream;
|
267 |
-
audioRecorder.mediaRecorder = new MediaRecorder(stream);
|
268 |
-
audioRecorder.audioBlobs = [];
|
269 |
-
|
270 |
-
audioRecorder.mediaRecorder.addEventListener("dataavailable", event => {
|
271 |
-
audioRecorder.audioBlobs.push(event.data);
|
272 |
-
});
|
273 |
-
|
274 |
-
audioRecorder.mediaRecorder.start();
|
275 |
-
});
|
276 |
-
}
|
277 |
-
},
|
278 |
-
stop: function() {
|
279 |
-
return new Promise(resolve => {
|
280 |
-
let mimeType = audioRecorder.mediaRecorder.mimeType;
|
281 |
-
|
282 |
-
audioRecorder.mediaRecorder.addEventListener("stop", () => {
|
283 |
-
let audioBlob = new Blob(audioRecorder.audioBlobs, { type: mimeType });
|
284 |
-
resolve(audioBlob);
|
285 |
-
});
|
286 |
-
|
287 |
-
audioRecorder.mediaRecorder.stop();
|
288 |
-
|
289 |
-
audioRecorder.stopStream();
|
290 |
-
audioRecorder.resetRecordingProperties();
|
291 |
-
});
|
292 |
-
},
|
293 |
-
stopStream: function() {
|
294 |
-
audioRecorder.streamBeingCaptured.getTracks()
|
295 |
-
.forEach(track => track.stop());
|
296 |
-
},
|
297 |
-
resetRecordingProperties: function() {
|
298 |
-
audioRecorder.mediaRecorder = null;
|
299 |
-
audioRecorder.streamBeingCaptured = null;
|
300 |
-
}
|
301 |
-
}
|
302 |
-
var isRecording = false;
|
303 |
-
var recordButton = document.getElementById('record-button');
|
304 |
-
var audioElement = document.getElementById('audio-playback');
|
305 |
-
var audioData = document.getElementById('audio-data');
|
306 |
-
|
307 |
-
function toggleRecording() {
|
308 |
-
if (!isRecording) {
|
309 |
-
audioRecorder.start()
|
310 |
-
.then(() => {
|
311 |
-
isRecording = true;
|
312 |
-
recordButton.textContent = 'Stop Recording';
|
313 |
-
recordButton.classList.add('recording');
|
314 |
-
})
|
315 |
-
.catch(error => {
|
316 |
-
alert('Error starting recording: ' + error.message);
|
317 |
-
});
|
318 |
-
} else {
|
319 |
-
audioRecorder.stop()
|
320 |
-
.then(audioBlob => {
|
321 |
-
const audioUrl = URL.createObjectURL(audioBlob);
|
322 |
-
audioElement.src = audioUrl;
|
323 |
-
|
324 |
-
const reader = new FileReader();
|
325 |
-
reader.readAsDataURL(audioBlob);
|
326 |
-
reader.onloadend = function() {
|
327 |
-
const base64data = reader.result;
|
328 |
-
audioData.value = base64data;
|
329 |
-
const streamlitMessage = {type: "streamlit:setComponentValue", value: base64data};
|
330 |
-
window.parent.postMessage(streamlitMessage, "*");
|
331 |
-
}
|
332 |
-
|
333 |
-
isRecording = false;
|
334 |
-
recordButton.textContent = 'Start Recording';
|
335 |
-
recordButton.classList.remove('recording');
|
336 |
-
});
|
337 |
-
}
|
338 |
-
}
|
339 |
-
document.addEventListener('DOMContentLoaded', function() {
|
340 |
-
recordButton = document.getElementById('record-button');
|
341 |
-
audioElement = document.getElementById('audio-playback');
|
342 |
-
audioData = document.getElementById('audio-data');
|
343 |
-
|
344 |
-
recordButton.addEventListener('click', toggleRecording);
|
345 |
-
});
|
346 |
-
</script>
|
347 |
-
<div class="audio-recorder-container">
|
348 |
-
<button id="record-button" class="record-button">Start Recording</button>
|
349 |
-
<audio id="audio-playback" controls style="display:block; margin-top:10px;"></audio>
|
350 |
-
<input type="hidden" id="audio-data" name="audio-data">
|
351 |
-
</div>
|
352 |
-
<style>
|
353 |
-
.audio-recorder-container {
|
354 |
-
display: flex;
|
355 |
-
flex-direction: column;
|
356 |
-
align-items: center;
|
357 |
-
padding: 20px;
|
358 |
-
}
|
359 |
-
.record-button {
|
360 |
-
background-color: #f63366;
|
361 |
-
color: white;
|
362 |
-
border: none;
|
363 |
-
padding: 10px 20px;
|
364 |
-
border-radius: 5px;
|
365 |
-
cursor: pointer;
|
366 |
-
font-size: 16px;
|
367 |
-
}
|
368 |
-
.record-button.recording {
|
369 |
-
background-color: #ff0000;
|
370 |
-
animation: pulse 1.5s infinite;
|
371 |
-
}
|
372 |
-
@keyframes pulse {
|
373 |
-
0% { opacity: 1; }
|
374 |
-
50% { opacity: 0.7; }
|
375 |
-
100% { opacity: 1; }
|
376 |
-
}
|
377 |
-
</style>
|
378 |
-
"""
|
379 |
-
|
380 |
-
return components.html(audio_recorder_html, height=150)
|
381 |
|
382 |
-
#
|
383 |
-
|
384 |
-
|
385 |
-
st.
|
386 |
-
st.session_state.debug_info.append(f"Processing text: {transcribed_text[:50]}...")
|
387 |
-
|
388 |
-
emotions_dict, top_emotion, emotion_map, sentiment = perform_emotion_detection(transcribed_text)
|
389 |
-
is_sarcastic, sarcasm_score = perform_sarcasm_detection(transcribed_text)
|
390 |
-
|
391 |
-
# Add results to debug info
|
392 |
-
st.session_state.debug_info.append(f"Top emotion: {top_emotion}, Sentiment: {sentiment}")
|
393 |
-
st.session_state.debug_info.append(f"Sarcasm: {is_sarcastic}, Score: {sarcasm_score:.3f}")
|
394 |
|
395 |
-
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
-
|
399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
-
|
402 |
-
|
|
|
|
|
|
|
|
|
403 |
|
|
|
|
|
404 |
with col1:
|
405 |
st.subheader("Sentiment")
|
406 |
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
|
407 |
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
|
408 |
-
st.info("Sentiment reflects the dominant emotion's tone.")
|
409 |
-
|
410 |
st.subheader("Sarcasm")
|
411 |
sarcasm_icon = "π" if is_sarcastic else "π"
|
412 |
-
|
413 |
-
st.markdown(f"**{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
|
414 |
-
st.info("Score indicates sarcasm confidence (0 to 1).")
|
415 |
|
416 |
with col2:
|
417 |
-
st.subheader("
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
st.plotly_chart(fig, use_container_width=True)
|
429 |
-
else:
|
430 |
-
st.write("No emotions detected.")
|
431 |
-
|
432 |
-
# Fix 6: Add debug expander for troubleshooting
|
433 |
-
with st.expander("Debug Information", expanded=False):
|
434 |
-
st.write("Debugging information for troubleshooting:")
|
435 |
-
for i, debug_line in enumerate(st.session_state.debug_info[-10:]):
|
436 |
-
st.text(f"{i+1}. {debug_line}")
|
437 |
-
if emotions_dict:
|
438 |
-
st.write("Raw emotion scores:")
|
439 |
-
for emotion, score in sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True):
|
440 |
-
if score > 0.01: # Only show non-negligible scores
|
441 |
-
st.text(f"{emotion}: {score:.4f}")
|
442 |
-
|
443 |
-
with st.expander("Analysis Details", expanded=False):
|
444 |
st.write("""
|
445 |
-
**How
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
**Accuracy depends on
|
451 |
-
- Audio quality
|
452 |
-
- Speech clarity
|
453 |
-
- Background noise
|
454 |
-
- Speech patterns
|
455 |
""")
|
456 |
|
457 |
-
#
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
binary_data = base64.b64decode(base64_binary)
|
462 |
-
|
463 |
-
temp_dir = tempfile.gettempdir()
|
464 |
-
temp_file_path = os.path.join(temp_dir, f"recording_{int(time.time())}.wav")
|
465 |
-
|
466 |
-
with open(temp_file_path, "wb") as f:
|
467 |
-
f.write(binary_data)
|
468 |
-
|
469 |
-
if not validate_audio(temp_file_path):
|
470 |
-
return None
|
471 |
-
|
472 |
-
return temp_file_path
|
473 |
-
except Exception as e:
|
474 |
-
st.error(f"Error processing audio data: {str(e)}")
|
475 |
-
return None
|
476 |
|
477 |
# Main App Logic
|
478 |
def main():
|
479 |
-
# Fix 7: Initialize session state for debugging
|
480 |
-
if 'debug_info' not in st.session_state:
|
481 |
-
st.session_state.debug_info = []
|
482 |
-
|
483 |
tab1, tab2 = st.tabs(["π Upload Audio", "ποΈ Record Audio"])
|
484 |
|
485 |
with tab1:
|
486 |
-
st.header("Upload
|
487 |
-
audio_file = st.file_uploader("
|
488 |
-
help="Upload an audio file for analysis")
|
489 |
-
|
490 |
if audio_file:
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
with st.spinner('Analyzing audio with advanced precision...'):
|
498 |
-
temp_audio_path = process_uploaded_audio(audio_file)
|
499 |
-
if temp_audio_path:
|
500 |
-
main_text, alternatives = transcribe_audio(temp_audio_path, show_alternative=True)
|
501 |
-
|
502 |
-
if main_text:
|
503 |
-
if alternatives:
|
504 |
-
with st.expander("Alternative transcriptions detected", expanded=False):
|
505 |
-
for i, alt in enumerate(alternatives[:3], 1):
|
506 |
-
st.write(f"{i}. {alt}")
|
507 |
-
|
508 |
-
display_analysis_results(main_text)
|
509 |
-
else:
|
510 |
-
st.error("Could not transcribe the audio. Please try again with clearer audio.")
|
511 |
-
|
512 |
-
if os.path.exists(temp_audio_path):
|
513 |
-
os.remove(temp_audio_path)
|
514 |
-
|
515 |
with tab2:
|
516 |
st.header("Record Your Voice")
|
517 |
-
st.write("
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
if audio_data:
|
525 |
-
analyze_rec_button = st.button("Analyze Recording", key="analyze_rec")
|
526 |
-
|
527 |
-
if analyze_rec_button:
|
528 |
-
with st.spinner("Processing your recording..."):
|
529 |
-
temp_audio_path = process_base64_audio(audio_data)
|
530 |
-
|
531 |
-
if temp_audio_path:
|
532 |
-
transcribed_text = transcribe_audio(temp_audio_path)
|
533 |
-
|
534 |
-
if transcribed_text:
|
535 |
-
display_analysis_results(transcribed_text)
|
536 |
-
else:
|
537 |
-
st.error("Could not transcribe the audio. Please try speaking more clearly.")
|
538 |
-
|
539 |
-
if os.path.exists(temp_audio_path):
|
540 |
-
os.remove(temp_audio_path)
|
541 |
-
|
542 |
-
st.subheader("Manual Text Input")
|
543 |
-
st.write("If recording doesn't work, you can type your text here:")
|
544 |
-
|
545 |
-
manual_text = st.text_area("Enter text to analyze:", placeholder="Type what you want to analyze...")
|
546 |
-
analyze_text_button = st.button("Analyze Text", key="analyze_manual")
|
547 |
-
|
548 |
-
if analyze_text_button and manual_text:
|
549 |
-
display_analysis_results(manual_text)
|
550 |
|
551 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
|
553 |
if __name__ == "__main__":
|
554 |
main()
|
|
|
3 |
import tempfile
|
4 |
import torch
|
5 |
import transformers
|
6 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, Wav2Vec2Processor, Wav2Vec2ForSequenceClassification
|
7 |
import plotly.express as px
|
8 |
import logging
|
9 |
import warnings
|
10 |
import whisper
|
11 |
from pydub import AudioSegment
|
12 |
import time
|
13 |
+
import numpy as np
|
14 |
+
import librosa
|
15 |
+
import subprocess
|
16 |
+
import pyaudio
|
17 |
+
import wave
|
18 |
import io
|
|
|
19 |
|
20 |
# Suppress warnings for a clean console
|
21 |
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
|
|
28 |
print(f"Using device: {device}")
|
29 |
|
30 |
# Set Streamlit app layout
|
31 |
+
st.set_page_config(layout="wide", page_title="Advanced Voice Emotion Analyzer")
|
32 |
|
33 |
# Interface design
|
34 |
+
st.title("ποΈ Advanced Voice Emotion Analyzer")
|
35 |
+
st.write("Analyze all emotions from audio using hybrid ML models, ensuring accurate detection across 27 emotions.")
|
36 |
|
37 |
+
# Audio Preprocessing
|
38 |
+
def make_audio_scarier(audio_path, output_path):
|
39 |
+
try:
|
40 |
+
commands = [
|
41 |
+
f"ffmpeg -i {audio_path} -af 'asetrate=44100*0.8,aresample=44100' temp1.wav",
|
42 |
+
f"ffmpeg -i temp1.wav -af 'reverb=0.8:0.2:0.5:0.5:0.5:0.5' temp2.wav",
|
43 |
+
f"ffmpeg -i temp2.wav -af 'atempo=1.2' {output_path}"
|
44 |
+
]
|
45 |
+
for cmd in commands:
|
46 |
+
subprocess.run(cmd, shell=True, check=True)
|
47 |
+
for temp_file in ["temp1.wav", "temp2.wav"]:
|
48 |
+
if os.path.exists(temp_file):
|
49 |
+
os.remove(temp_file)
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Audio processing failed: {str(e)}")
|
52 |
+
raise
|
53 |
+
|
54 |
+
# Audio Feature Extraction
|
55 |
+
def extract_audio_features(audio_path):
|
56 |
+
try:
|
57 |
+
y, sr = librosa.load(audio_path, sr=16000)
|
58 |
+
pitch_mean = np.mean(librosa.piptrack(y=y, sr=sr)[0][librosa.piptrack(y=y, sr=sr)[0] > 0]) if np.any(librosa.piptrack(y=y, sr=sr)[0] > 0) else 0
|
59 |
+
energy_mean = np.mean(librosa.feature.rms(y=y))
|
60 |
+
zcr_mean = np.mean(librosa.feature.zero_crossing_rate(y))
|
61 |
+
return {"pitch_mean": pitch_mean, "energy_mean": energy_mean, "zcr_mean": zcr_mean}
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Audio feature extraction failed: {str(e)}")
|
64 |
+
return {}
|
65 |
+
|
66 |
+
# Audio Emotion Classification with Wav2Vec2
|
67 |
+
@st.cache_resource
|
68 |
+
def get_audio_emotion_classifier():
|
69 |
+
processor = Wav2Vec2Processor.from_pretrained("superb/wav2vec2-base-superb-er")
|
70 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er")
|
71 |
+
model = model.to(device)
|
72 |
+
return processor, model
|
73 |
+
|
74 |
+
def perform_audio_emotion_detection(audio_path):
|
75 |
+
try:
|
76 |
+
processor, model = get_audio_emotion_classifier()
|
77 |
+
waveform, sample_rate = librosa.load(audio_path, sr=16000)
|
78 |
+
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt", padding=True)
|
79 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
80 |
+
with torch.no_grad():
|
81 |
+
logits = model(**inputs).logits
|
82 |
+
scores = torch.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
83 |
+
audio_emotions = ["neutral", "happy", "sad", "angry", "fearful", "surprise", "disgust"]
|
84 |
+
emotion_dict = {emotion: float(scores[i]) for i, emotion in enumerate(audio_emotions)}
|
85 |
+
top_emotion = audio_emotions[np.argmax(scores)]
|
86 |
+
# Boost emotions for audio characteristics
|
87 |
+
features = extract_audio_features(audio_path)
|
88 |
+
if features.get("pitch_mean", 0) < 200 and features.get("energy_mean", 0) > 0.1 and features.get("zcr_mean", 0) > 0.1:
|
89 |
+
emotion_dict["fearful"] = min(1.0, emotion_dict.get("fearful", 0) + 0.3)
|
90 |
+
top_emotion = "fearful" if emotion_dict["fearful"] > emotion_dict[top_emotion] else top_emotion
|
91 |
+
elif features.get("energy_mean", 0) > 0.2:
|
92 |
+
emotion_dict["angry"] = min(1.0, emotion_dict.get("angry", 0) + 0.2)
|
93 |
+
top_emotion = "angry" if emotion_dict["angry"] > emotion_dict[top_emotion] else top_emotion
|
94 |
+
return emotion_dict, top_emotion
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Audio emotion detection failed: {str(e)}")
|
97 |
+
return {}, "unknown"
|
98 |
+
|
99 |
+
# Text Emotion Classification with RoBERTa
|
100 |
@st.cache_resource
|
101 |
+
def get_text_emotion_classifier():
|
102 |
tokenizer = AutoTokenizer.from_pretrained("SamLowe/roberta-base-go_emotions", use_fast=True)
|
103 |
model = AutoModelForSequenceClassification.from_pretrained("SamLowe/roberta-base-go_emotions")
|
104 |
model = model.to(device)
|
105 |
return pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None, device=-1 if device.type == "cpu" else 0)
|
106 |
|
107 |
+
def perform_text_emotion_detection(text):
|
108 |
try:
|
109 |
+
classifier = get_text_emotion_classifier()
|
110 |
+
results = classifier(text)[0]
|
111 |
+
emotions = ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion",
|
112 |
+
"curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment",
|
113 |
+
"excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism",
|
114 |
+
"pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"]
|
115 |
+
emotions_dict = {result['label']: result['score'] for result in results if result['label'] in emotions}
|
116 |
+
top_emotion = max(emotions_dict, key=emotions_dict.get)
|
117 |
+
return emotions_dict, top_emotion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
except Exception as e:
|
119 |
+
st.error(f"Text emotion detection failed: {str(e)}")
|
120 |
+
return {}, "unknown"
|
|
|
121 |
|
122 |
+
# Sarcasm Detection
|
123 |
@st.cache_resource
|
124 |
def get_sarcasm_classifier():
|
125 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-irony", use_fast=True)
|
|
|
129 |
|
130 |
def perform_sarcasm_detection(text):
|
131 |
try:
|
132 |
+
classifier = get_sarcasm_classifier()
|
133 |
+
result = classifier(text)[0]
|
|
|
|
|
|
|
134 |
is_sarcastic = result['label'] == "LABEL_1"
|
135 |
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
|
136 |
return is_sarcastic, sarcasm_score
|
|
|
138 |
st.error(f"Sarcasm detection failed: {str(e)}")
|
139 |
return False, 0.0
|
140 |
|
141 |
+
# Validate Audio
|
142 |
def validate_audio(audio_path):
|
143 |
try:
|
144 |
sound = AudioSegment.from_file(audio_path)
|
145 |
+
if sound.dBFS < -50 or len(sound) < 1000:
|
146 |
+
st.warning("Audio volume too low or too short. Please use a louder, longer audio.")
|
|
|
|
|
|
|
147 |
return False
|
148 |
return True
|
149 |
+
except Exception:
|
150 |
st.error("Invalid or corrupted audio file.")
|
151 |
return False
|
152 |
|
153 |
# Speech Recognition with Whisper
|
154 |
@st.cache_resource
|
155 |
def load_whisper_model():
|
156 |
+
return whisper.load_model("large-v3")
|
|
|
|
|
157 |
|
158 |
+
def transcribe_audio(audio_path):
|
159 |
try:
|
|
|
160 |
sound = AudioSegment.from_file(audio_path)
|
|
|
|
|
|
|
161 |
temp_wav_path = os.path.join(tempfile.gettempdir(), "temp_converted.wav")
|
162 |
+
sound = sound.set_frame_rate(16000).set_channels(1)
|
|
|
163 |
sound.export(temp_wav_path, format="wav")
|
|
|
|
|
164 |
model = load_whisper_model()
|
|
|
|
|
165 |
result = model.transcribe(temp_wav_path, language="en")
|
166 |
+
os.remove(temp_wav_path)
|
167 |
+
return result["text"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
except Exception as e:
|
169 |
st.error(f"Transcription failed: {str(e)}")
|
170 |
+
return ""
|
171 |
|
172 |
+
# Python Audio Recording
|
173 |
+
def record_audio():
|
174 |
+
CHUNK = 1024
|
175 |
+
FORMAT = pyaudio.paInt16
|
176 |
+
CHANNELS = 1
|
177 |
+
RATE = 16000
|
178 |
+
RECORD_SECONDS = st.slider("Recording duration (seconds)", 1, 30, 5)
|
179 |
+
|
180 |
+
p = pyaudio.PyAudio()
|
181 |
+
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
|
182 |
|
183 |
+
if st.button("Start Recording"):
|
184 |
+
st.write("Recording...")
|
185 |
+
frames = []
|
186 |
+
for _ in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
187 |
+
data = stream.read(CHUNK)
|
188 |
+
frames.append(data)
|
189 |
+
st.write("Recording finished.")
|
190 |
+
|
191 |
+
stream.stop_stream()
|
192 |
+
stream.close()
|
193 |
+
p.terminate()
|
194 |
+
|
195 |
+
temp_file_path = os.path.join(tempfile.gettempdir(), f"recorded_audio_{int(time.time())}.wav")
|
196 |
+
wf = wave.open(temp_file_path, 'wb')
|
197 |
+
wf.setnchannels(CHANNELS)
|
198 |
+
wf.setsampwidth(p.get_sample_size(FORMAT))
|
199 |
+
wf.setframerate(RATE)
|
200 |
+
wf.writeframes(b''.join(frames))
|
201 |
+
wf.close()
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
return temp_file_path
|
204 |
+
return None
|
205 |
+
|
206 |
+
# Process Audio Files
|
207 |
+
def process_audio_file(audio_data):
|
208 |
+
temp_dir = tempfile.gettempdir()
|
209 |
+
temp_file_path = os.path.join(temp_dir, f"audio_{int(time.time())}.wav")
|
210 |
+
with open(temp_file_path, "wb") as f:
|
211 |
+
if isinstance(audio_data, str):
|
212 |
+
with open(audio_data, "rb") as f_audio:
|
213 |
+
f.write(f_audio.read())
|
214 |
+
else:
|
215 |
+
f.write(audio_data.getvalue())
|
216 |
+
if not validate_audio(temp_file_path):
|
217 |
return None
|
218 |
+
return temp_file_path
|
219 |
|
220 |
+
# Display Results
|
221 |
+
def display_analysis_results(audio_path):
|
222 |
+
st.header("Audio Analysis")
|
223 |
+
st.audio(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
# Preprocess audio
|
226 |
+
processed_audio_path = os.path.join(tempfile.gettempdir(), f"processed_{int(time.time())}.wav")
|
227 |
+
make_audio_scarier(audio_path, processed_audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
# Audio emotion detection
|
230 |
+
audio_emotions, audio_top_emotion = perform_audio_emotion_detection(processed_audio_path)
|
231 |
+
st.subheader("Audio-Based Emotion")
|
232 |
+
st.write(f"**Dominant Emotion:** {audio_top_emotion} (Score: {audio_emotions.get(audio_top_emotion, 0):.3f})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# Transcription and text emotion detection
|
235 |
+
transcribed_text = transcribe_audio(processed_audio_path)
|
236 |
+
st.subheader("Transcribed Text")
|
237 |
+
st.text_area("Text", transcribed_text, height=100, disabled=True)
|
238 |
+
if transcribed_text:
|
239 |
+
text_emotions, text_top_emotion = perform_text_emotion_detection(transcribed_text)
|
240 |
+
st.write(f"**Text-Based Dominant Emotion:** {text_top_emotion} (Score: {text_emotions.get(text_top_emotion, 0):.3f})")
|
241 |
|
242 |
+
# Combine emotions (prioritize audio, map to 27 emotions)
|
243 |
+
emotion_map = {
|
244 |
+
"neutral": "neutral", "happy": "joy", "sad": "sadness", "angry": "anger",
|
245 |
+
"fearful": "fear", "surprise": "surprise", "disgust": "disgust"
|
246 |
+
}
|
247 |
+
combined_emotions = {emotion: 0 for emotion in ["admiration", "amusement", "anger", "annoyance", "approval", "caring",
|
248 |
+
"confusion", "curiosity", "desire", "disappointment", "disapproval",
|
249 |
+
"disgust", "embarrassment", "excitement", "fear", "gratitude",
|
250 |
+
"grief", "joy", "love", "nervousness", "optimism", "pride",
|
251 |
+
"realization", "relief", "remorse", "sadness", "surprise", "neutral"]}
|
252 |
+
for audio_emotion, score in audio_emotions.items():
|
253 |
+
mapped_emotion = emotion_map.get(audio_emotion, "neutral")
|
254 |
+
combined_emotions[mapped_emotion] = max(combined_emotions[mapped_emotion], score * 0.7)
|
255 |
+
if transcribed_text:
|
256 |
+
for text_emotion, score in text_emotions.items():
|
257 |
+
combined_emotions[text_emotion] = combined_emotions.get(text_emotion, 0) + score * 0.3
|
258 |
|
259 |
+
top_emotion = max(combined_emotions, key=combined_emotions.get)
|
260 |
+
sentiment = "POSITIVE" if top_emotion in ["admiration", "amusement", "approval", "caring", "desire", "excitement",
|
261 |
+
"gratitude", "joy", "love", "optimism", "pride", "relief"] else "NEGATIVE" if top_emotion in ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"] else "NEUTRAL"
|
262 |
+
|
263 |
+
# Sarcasm detection
|
264 |
+
is_sarcastic, sarcasm_score = perform_sarcasm_detection(transcribed_text) if transcribed_text else (False, 0.0)
|
265 |
|
266 |
+
# Display results
|
267 |
+
col1, col2 = st.columns([1, 2])
|
268 |
with col1:
|
269 |
st.subheader("Sentiment")
|
270 |
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
|
271 |
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
|
|
|
|
|
272 |
st.subheader("Sarcasm")
|
273 |
sarcasm_icon = "π" if is_sarcastic else "π"
|
274 |
+
st.markdown(f"**{sarcasm_icon} {'Detected' if is_sarcastic else 'Not Detected'}** (Score: {sarcasm_score:.3f})")
|
|
|
|
|
275 |
|
276 |
with col2:
|
277 |
+
st.subheader("Emotion Distribution")
|
278 |
+
sorted_emotions = sorted(combined_emotions.items(), key=lambda x: x[1], reverse=True)[:10]
|
279 |
+
emotions, scores = zip(*sorted_emotions)
|
280 |
+
fig = px.bar(x=list(emotions), y=list(scores), labels={'x': 'Emotion', 'y': 'Score'},
|
281 |
+
title="Top Emotion Scores", color=list(emotions),
|
282 |
+
color_discrete_sequence=px.colors.qualitative.Bold)
|
283 |
+
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14)
|
284 |
+
st.plotly_chart(fig, use_container_width=True)
|
285 |
+
|
286 |
+
with st.expander("Details"):
|
287 |
+
st.write(f"**Audio Features:** {extract_audio_features(processed_audio_path)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
st.write("""
|
289 |
+
**How it works:**
|
290 |
+
- Audio Emotion: Wav2Vec2 detects 7 emotions from audio.
|
291 |
+
- Transcription: Whisper converts audio to text.
|
292 |
+
- Text Emotion: RoBERTa refines 27 emotions from text.
|
293 |
+
- Sarcasm: Analyzes text for irony.
|
294 |
+
**Accuracy depends on:** Audio quality, clarity, and noise.
|
|
|
|
|
|
|
|
|
295 |
""")
|
296 |
|
297 |
+
# Clean up
|
298 |
+
for path in [audio_path, processed_audio_path]:
|
299 |
+
if os.path.exists(path):
|
300 |
+
os.remove(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
# Main App Logic
|
303 |
def main():
|
|
|
|
|
|
|
|
|
304 |
tab1, tab2 = st.tabs(["π Upload Audio", "ποΈ Record Audio"])
|
305 |
|
306 |
with tab1:
|
307 |
+
st.header("Upload Audio File")
|
308 |
+
audio_file = st.file_uploader("Upload audio (wav, mp3, ogg)", type=["wav", "mp3", "ogg"])
|
|
|
|
|
309 |
if audio_file:
|
310 |
+
temp_audio_path = process_audio_file(audio_file)
|
311 |
+
if temp_audio_path:
|
312 |
+
if st.button("Analyze Upload"):
|
313 |
+
with st.spinner("Analyzing..."):
|
314 |
+
display_analysis_results(temp_audio_path)
|
315 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
with tab2:
|
317 |
st.header("Record Your Voice")
|
318 |
+
st.write("Record audio to analyze emotions in real-time.")
|
319 |
+
temp_audio_path = record_audio()
|
320 |
+
if temp_audio_path:
|
321 |
+
if st.button("Analyze Recording"):
|
322 |
+
with st.spinner("Processing..."):
|
323 |
+
display_analysis_results(temp_audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
+
st.sidebar.header("About")
|
326 |
+
st.sidebar.write("""
|
327 |
+
**Models Used:**
|
328 |
+
- Audio: superb/wav2vec2-base-superb-er (7 emotions)
|
329 |
+
- Text: SamLowe/roberta-base-go_emotions (27 emotions)
|
330 |
+
- Sarcasm: cardiffnlp/twitter-roberta-base-irony
|
331 |
+
- Speech: OpenAI Whisper (large-v3)
|
332 |
+
""")
|
333 |
|
334 |
if __name__ == "__main__":
|
335 |
main()
|