Spaces:
Running
Running
| import streamlit as st | |
| import pandas as pd | |
| def display_csv(file_path, columns_to_display): | |
| # Load the CSV file using pandas | |
| df = pd.read_csv(file_path) | |
| # Select only the specified columns | |
| df_selected_columns = df[columns_to_display].sort_values(by=['avg_score'], ascending=False).reset_index(drop=True) | |
| # Display the selected columns as a table | |
| st.dataframe(df_selected_columns, height=500, width=1000) | |
| def main(): | |
| # Hardcoded file path | |
| file_path = "merged-averaged-model_timings_2.1.0_12.1_NVIDIA_A10G_False.csv" | |
| # Columns to display | |
| columns_to_display = [ | |
| "model_name", "pretrained", "avg_score", "image_time", "text_time", | |
| "image_shape", "text_shape", | |
| "output shape", | |
| "params (M)", "FLOPs (B)" | |
| ] # Specify the columns you want to display | |
| # Add header and description | |
| st.header("CLIP benchmarks - retrieval and inference") | |
| st.write("CLIP benchmarks for inference and retrieval performance. Image size, context length and output dimensions are also included. Retrieval performance comes from https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_retrieval_results.csv.Tested with A10G, CUDA 12.1, Torch 2.1.0") | |
| # Call the display_csv function with the hardcoded file path and selected columns | |
| display_csv(file_path, columns_to_display) | |
| # Custom CSS to make the app full screen | |
| st.markdown(""" | |
| <style> | |
| .reportview-container { | |
| width: 100%; | |
| height: 100%; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| if __name__ == "__main__": | |
| main() |