TRIAL / app.py
MarwanAshraf22's picture
Update app.py
c040d38
raw
history blame
2.11 kB
from transformers import AutoTokenizer
import transformers
import torch
import streamlit as st
model_name = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = transformers.pipeline(
"text-generation",
model=model_name,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
def generate_text(prompt, section, max_length=200, top_k=50, temperature=0.7):
sequences = generator(
f"{section} - {prompt}",
max_length=max_length,
do_sample=True,
top_k=top_k,
temperature=temperature,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
return sequences[0]["generated_text"]
# Streamlit app
st.title("AI-Generated Blog Post")
# Keyword selection input
keywords_input = st.text_input("Step 1: Keyword Selection (Separate keywords with commas)", "Artificial Intelligence")
keywords = [word.strip() for word in keywords_input.split(',')]
# Display generated content on button click
if st.button('Generate Article'):
if keywords_input:
generated_text = " ".join(keywords)
intro_text = generate_text(generated_text, "Introduction", max_length=200, top_k=50, temperature=0.7)
body_text = generate_text(generated_text, "Body", max_length=500, top_k=50, temperature=0.7)
conclusion_text = generate_text(generated_text, "Conclusion", max_length=150, top_k=50, temperature=0.7)
# Displaying the sections
st.header("Introduction")
st.write(intro_text)
st.header("Body")
st.write(body_text)
st.header("Conclusion")
st.write(conclusion_text)
else:
st.warning("Please input keywords to generate content.")
# Sidebar with instructions
st.sidebar.title("Instructions")
st.sidebar.write(
"1. Enter keywords related to the topic you want to generate content about."
"\n2. Click 'Generate Article' to create the AI-generated blog post."
"\n3. Explore the Introduction, Body, and Conclusion sections of the generated content."
)