MasumBhuiyan commited on
Commit
8fb7712
·
verified ·
1 Parent(s): da67f66

Uploaded files.

Browse files
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import joblib
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
+
7
+ # Load pre-trained models and scalers
8
+ scaler_initial = joblib.load("scaler_initial.pkl")
9
+ scaler_with_cluster = joblib.load("scaler_with_cluster.pkl")
10
+ kmeans = joblib.load("kmeans.pkl")
11
+ linear_model = joblib.load("linear_model.pkl")
12
+ poly_model = joblib.load("poly_model.pkl")
13
+ ridge_model = joblib.load("ridge_model.pkl")
14
+ rf_regressor = joblib.load("rf_regressor.pkl")
15
+ logistic_model = joblib.load("logistic_model.pkl")
16
+ rf_classifier = joblib.load("rf_classifier.pkl")
17
+
18
+
19
+ # Prediction function
20
+ def predict_aqi(pm25, pm10, no2, co, temp, humidity):
21
+ # Create input dataframe with initial features
22
+ input_data = pd.DataFrame([[pm25, pm10, no2, co, temp, humidity]],
23
+ columns=["PM2.5", "PM10", "NO2", "CO", "Temperature", "Humidity"])
24
+
25
+ # Scale initial features for clustering
26
+ input_scaled_initial = scaler_initial.transform(input_data)
27
+
28
+ # Apply K-means clustering
29
+ cluster = kmeans.predict(input_scaled_initial)[0]
30
+ input_data['Cluster'] = cluster
31
+
32
+ # Scale data with Cluster feature
33
+ input_scaled_with_cluster = scaler_with_cluster.transform(input_data)
34
+
35
+ # Regression predictions
36
+ linear_pred = linear_model.predict(input_scaled_with_cluster)[0]
37
+ poly_pred = poly_model.predict(input_scaled_with_cluster)[0]
38
+ ridge_pred = ridge_model.predict(input_scaled_with_cluster)[0]
39
+ rf_pred = rf_regressor.predict(input_scaled_with_cluster)[0]
40
+
41
+ # Classification predictions
42
+ logistic_class = logistic_model.predict(input_scaled_with_cluster)[0]
43
+ rf_class = rf_classifier.predict(input_scaled_with_cluster)[0]
44
+
45
+ # Create performance plot
46
+ models = ["Linear", "Polynomial", "Ridge", "Random Forest"]
47
+ predictions = [linear_pred, poly_pred, ridge_pred, rf_pred]
48
+ plt.figure(figsize=(8, 4))
49
+ sns.barplot(x=models, y=predictions)
50
+ plt.title("AQI Predictions by Model")
51
+ plt.ylabel("Predicted AQI")
52
+ plt.savefig("aqi_plot.png")
53
+ plt.close()
54
+
55
+ output_text = (
56
+ f"Linear Regression AQI: {linear_pred:.2f}\n"
57
+ f"Polynomial Regression AQI: {poly_pred:.2f}\n"
58
+ f"Ridge Regression AQI: {ridge_pred:.2f}\n"
59
+ f"Random Forest AQI: {rf_pred:.2f}\n"
60
+ f"Logistic Classification: {'Safe' if logistic_class == 0 else 'Unsafe'}\n"
61
+ f"Random Forest Classification: {'Safe' if rf_class == 0 else 'Unsafe'}"
62
+ )
63
+ return output_text, "aqi_plot.png"
64
+
65
+
66
+ # Gradio interface
67
+ iface = gr.Interface(
68
+ fn=predict_aqi,
69
+ inputs=[
70
+ gr.Slider(0, 200, label="PM2.5 (µg/m³)", value=50),
71
+ gr.Slider(0, 300, label="PM10 (µg/m³)", value=80),
72
+ gr.Slider(0, 100, label="NO2 (µg/m³)", value=20),
73
+ gr.Slider(0, 10, label="CO (mg/m³)", value=1),
74
+ gr.Slider(-10, 40, label="Temperature (°C)", value=20),
75
+ gr.Slider(0, 100, label="Humidity (%)", value=50)
76
+ ],
77
+ outputs=[
78
+ gr.Textbox(label="Predictions"),
79
+ gr.Image(label="Model Comparison Plot")
80
+ ],
81
+ title="Air Quality Prediction and Classification",
82
+ description="Enter pollutant levels and weather conditions to predict AQI and classify air quality. Built with multiple machine learning models to address urban air pollution."
83
+ )
84
+
85
+ if __name__ == "__main__":
86
+ iface.launch()
kmeans.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97a6ecdb004ad35fdadcb196518cfe9567ff3e043971c8f8e87d4a04fcffa814
3
+ size 4871
linear_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bee2a0d250041256fb29fa8fa370bfe341f17ebb676e70b4a48d62ad845e1ec6
3
+ size 656
logistic_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0d8d92f39744c7f0172577f9a85be35e6798d6322096a1dce3b55a6f65669f6
3
+ size 879
poly_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:967d72036668b807bdd138d7f169faa634b16ade943dfe95be075e540981e08b
3
+ size 1439
rf_classifier.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:558446d08687cf4ccc39a9dc31fb23842eb22f83595f687a1aa98d1bc3889002
3
+ size 2785769
rf_regressor.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad238a7f778b182d9d55d674a8ba77d309a05a2a62cd101d83d9fff346b60138
3
+ size 7299601
ridge_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5154a961f3f9c1c1c0604b1fc318553f78b4a00fdc96403be137c612161fd6f9
3
+ size 608
scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:975c9d316b72c961b7dd3849a194930b59735413c7f827ff071ee7694ef8ec82
3
+ size 1127
scaler_initial.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:975c9d316b72c961b7dd3849a194930b59735413c7f827ff071ee7694ef8ec82
3
+ size 1127
scaler_with_cluster.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e61f76fab60f57857131c148ea8c341615bbc86c1e471041f29684ea7f5653
3
+ size 1151