Spaces:
Sleeping
Sleeping
BhuiyanMasum
commited on
Commit
·
35f6479
1
Parent(s):
ae22ae6
changes
Browse files- app.py +83 -33
- model_weights.pth +3 -0
- model.pth → vocab.pkl +2 -2
app.py
CHANGED
@@ -4,26 +4,76 @@ import torch
|
|
4 |
from fastapi import FastAPI, UploadFile, File
|
5 |
from fastapi.responses import JSONResponse
|
6 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
app = FastAPI()
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Define input schema for JSON requests
|
15 |
-
class ImageInput(BaseModel):
|
16 |
-
image_path: str
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
# Root endpoint
|
@@ -31,21 +81,21 @@ def preprocess_image(image):
|
|
31 |
def greet_json():
|
32 |
return {"Hello": "World!"}
|
33 |
|
34 |
-
|
35 |
-
# Predict endpoint for JSON input
|
36 |
-
@app.post("/predict")
|
37 |
-
async def predict_image(file: UploadFile = File(...)):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
4 |
from fastapi import FastAPI, UploadFile, File
|
5 |
from fastapi.responses import JSONResponse
|
6 |
from pydantic import BaseModel
|
7 |
+
import torch.nn as nn
|
8 |
+
import pickle
|
9 |
+
import re
|
10 |
+
|
11 |
+
token_2_id = None
|
12 |
+
# Load the dictionary later
|
13 |
+
with open(".\\vocab.pkl", "rb") as f:
|
14 |
+
token_2_id = pickle.load(f)
|
15 |
+
print(token_2_id)
|
16 |
+
|
17 |
+
|
18 |
+
def normalize(text):
|
19 |
+
text = text.lower()
|
20 |
+
text = re.sub(r'[^a-z0-9\s]', '', text)
|
21 |
+
text = ' '.join(text.split())
|
22 |
+
return text
|
23 |
+
|
24 |
+
|
25 |
+
def tokenize(text):
|
26 |
+
tokens = text.split()
|
27 |
+
return tokens
|
28 |
+
|
29 |
+
|
30 |
+
def convert_tokens_2_ids(tokens):
|
31 |
+
input_ids = [
|
32 |
+
token_2_id.get(token, token_2_id['<UNK>']) for token in tokens
|
33 |
+
]
|
34 |
+
return input_ids
|
35 |
|
|
|
36 |
|
37 |
+
def process_text(text, aspect):
|
38 |
+
text_aspect_pair = text + ' ' + aspect
|
39 |
+
normalized_text = normalize(text_aspect_pair)
|
40 |
+
tokens = tokenize(normalized_text)
|
41 |
+
input_ids = convert_tokens_2_ids(tokens)
|
42 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
43 |
+
return input_ids
|
44 |
|
|
|
|
|
|
|
45 |
|
46 |
+
class ABSA(nn.Module):
|
47 |
+
def __init__(self, vocab_size, num_labels=3):
|
48 |
+
super(ABSA, self).__init__()
|
49 |
+
self.vocab_size = vocab_size
|
50 |
+
self.num_labels = num_labels
|
51 |
+
self.embedding_layer = nn.Embedding(
|
52 |
+
num_embeddings=vocab_size, embedding_dim=256
|
53 |
+
)
|
54 |
+
self.lstm_layer = nn.LSTM(
|
55 |
+
input_size=256,
|
56 |
+
hidden_size=512,
|
57 |
+
batch_first=True,
|
58 |
+
)
|
59 |
|
60 |
+
self.fc_layer = nn.Linear(
|
61 |
+
in_features=512,
|
62 |
+
out_features=self.num_labels
|
63 |
+
)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
embeddings = self.embedding_layer(x)
|
67 |
+
lstm_out, _ = self.lstm_layer(embeddings)
|
68 |
+
logits = self.fc_layer(lstm_out[:, -1, :])
|
69 |
+
return logits
|
70 |
+
|
71 |
+
|
72 |
+
model = ABSA(vocab_size=len(token_2_id.keys()), num_labels=3)
|
73 |
+
model = model.load_state_dict(torch.load('model_weights.pth'))
|
74 |
+
|
75 |
+
print("Model loaded successfully")
|
76 |
+
app = FastAPI()
|
77 |
|
78 |
|
79 |
# Root endpoint
|
|
|
81 |
def greet_json():
|
82 |
return {"Hello": "World!"}
|
83 |
|
84 |
+
#
|
85 |
+
# # Predict endpoint for JSON input
|
86 |
+
# @app.post("/predict")
|
87 |
+
# async def predict_image(file: UploadFile = File(...)):
|
88 |
+
# try:
|
89 |
+
# # Read and preprocess the uploaded image
|
90 |
+
# image = Image.open(file.file)
|
91 |
+
# image = preprocess_image(image)
|
92 |
+
#
|
93 |
+
# # Make prediction
|
94 |
+
# model.eval()
|
95 |
+
# with torch.no_grad():
|
96 |
+
# output = model(image)
|
97 |
+
# prediction = output.argmax(dim=1).item()
|
98 |
+
#
|
99 |
+
# return JSONResponse(content={"prediction": f"The digit is {prediction}"})
|
100 |
+
# except Exception as e:
|
101 |
+
# return JSONResponse(content={"error": str(e)}, status_code=500)
|
model_weights.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b1a6752d09f7a562dd93c6d857987c4df789908e132287bef226ac82c6c2a80
|
3 |
+
size 10208198
|
model.pth → vocab.pkl
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e195b47d3a84c730ff3a7f25df52b335174ba06914d9404bffa7f4422603d60
|
3 |
+
size 47213
|