| 
							 | 
						#include "common.cuh" | 
					
					
						
						| 
							 | 
						#include "fattn-common.cuh" | 
					
					
						
						| 
							 | 
						#include "fattn-tile-f32.cuh" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#define FATTN_KQ_STRIDE_TILE_F32 32 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap>  | 
					
					
						
						| 
							 | 
						#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) | 
					
					
						
						| 
							 | 
						__launch_bounds__(nwarps*WARP_SIZE, 1) | 
					
					
						
						| 
							 | 
						#endif  | 
					
					
						
						| 
							 | 
						static __global__ void flash_attn_tile_ext_f32( | 
					
					
						
						| 
							 | 
						        const char * __restrict__ Q, | 
					
					
						
						| 
							 | 
						        const char * __restrict__ K, | 
					
					
						
						| 
							 | 
						        const char * __restrict__ V, | 
					
					
						
						| 
							 | 
						        const char * __restrict__ mask, | 
					
					
						
						| 
							 | 
						        float      * __restrict__ dst, | 
					
					
						
						| 
							 | 
						        float2     * __restrict__ dst_meta, | 
					
					
						
						| 
							 | 
						        const float scale, | 
					
					
						
						| 
							 | 
						        const float max_bias, | 
					
					
						
						| 
							 | 
						        const float m0, | 
					
					
						
						| 
							 | 
						        const float m1, | 
					
					
						
						| 
							 | 
						        const uint32_t n_head_log2, | 
					
					
						
						| 
							 | 
						        const float logit_softcap, | 
					
					
						
						| 
							 | 
						        const int ne00, | 
					
					
						
						| 
							 | 
						        const int ne01, | 
					
					
						
						| 
							 | 
						        const int ne02, | 
					
					
						
						| 
							 | 
						        const int ne03, | 
					
					
						
						| 
							 | 
						        const int ne10, | 
					
					
						
						| 
							 | 
						        const int ne11, | 
					
					
						
						| 
							 | 
						        const int ne12, | 
					
					
						
						| 
							 | 
						        const int ne13, | 
					
					
						
						| 
							 | 
						        const int ne31, | 
					
					
						
						| 
							 | 
						        const int nb31, | 
					
					
						
						| 
							 | 
						        const int nb01, | 
					
					
						
						| 
							 | 
						        const int nb02, | 
					
					
						
						| 
							 | 
						        const int nb03, | 
					
					
						
						| 
							 | 
						        const int nb11, | 
					
					
						
						| 
							 | 
						        const int nb12, | 
					
					
						
						| 
							 | 
						        const int nb13, | 
					
					
						
						| 
							 | 
						        const int nb21, | 
					
					
						
						| 
							 | 
						        const int nb22, | 
					
					
						
						| 
							 | 
						        const int nb23, | 
					
					
						
						| 
							 | 
						        const int ne0, | 
					
					
						
						| 
							 | 
						        const int ne1, | 
					
					
						
						| 
							 | 
						        const int ne2, | 
					
					
						
						| 
							 | 
						        const int ne3) { | 
					
					
						
						| 
							 | 
						#ifndef FLASH_ATTN_AVAILABLE | 
					
					
						
						| 
							 | 
						    NO_DEVICE_CODE; | 
					
					
						
						| 
							 | 
						    return; | 
					
					
						
						| 
							 | 
						#endif  | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if (use_logit_softcap && !(D == 128 || D == 256)) { | 
					
					
						
						| 
							 | 
						        NO_DEVICE_CODE; | 
					
					
						
						| 
							 | 
						        return; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    const int ic0 = (blockIdx.x / parallel_blocks) * ncols;  | 
					
					
						
						| 
							 | 
						    const int ip  =  blockIdx.x % parallel_blocks;  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    const int gqa_ratio = ne02 / ne12;  | 
					
					
						
						| 
							 | 
						    const float2 * Q_f2  = (const float2 *) (Q    + nb02* blockIdx.y              + nb01*ic0); | 
					
					
						
						| 
							 | 
						    const half2  * K_h2  = (const half2  *) (K    + nb12*(blockIdx.y / gqa_ratio)); | 
					
					
						
						| 
							 | 
						    const half2  * V_h2  = (const half2  *) (V    + nb12*(blockIdx.y / gqa_ratio));  | 
					
					
						
						| 
							 | 
						    const half   * maskh = (const half   *)  mask + ne11*ic0; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    const int stride_KV2 = nb11 / sizeof(half2); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    __shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32]; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    __shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1];  | 
					
					
						
						| 
							 | 
						    float2 * KV_tmp2 = (float2 *) KV_tmp; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    float kqmax[ncols/nwarps]; | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						    for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
					
					
						
						| 
							 | 
						        kqmax[j0/nwarps] = -FLT_MAX/2.0f; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    float kqsum[ncols/nwarps] = {0.0f}; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    __shared__ float Q_f[ncols][D]; | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						    for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
					
					
						
						| 
							 | 
						        const int j = j0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) { | 
					
					
						
						| 
							 | 
						            float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f); | 
					
					
						
						| 
							 | 
						            Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale; | 
					
					
						
						| 
							 | 
						            Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale; | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    __syncthreads(); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32; | 
					
					
						
						| 
							 | 
						    for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) { | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        float kqmax_new[ncols/nwarps]; | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int j = 0; j < ncols/nwarps; ++j) { | 
					
					
						
						| 
							 | 
						            kqmax_new[j] = kqmax[j]; | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) { | 
					
					
						
						| 
							 | 
						            const int i_KQ = i_KQ_0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) { | 
					
					
						
						| 
							 | 
						                const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x]; | 
					
					
						
						| 
							 | 
						                KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] =  __low2float(tmp); | 
					
					
						
						| 
							 | 
						                KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp); | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        __syncthreads(); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}}; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int k_KQ = 0; k_KQ < D; ++k_KQ) { | 
					
					
						
						| 
							 | 
						            float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE]; | 
					
					
						
						| 
							 | 
						            float Q_k[ncols/nwarps]; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						                const int i_KQ = i_KQ_0 + threadIdx.x; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | 
					
					
						
						| 
							 | 
						                const int j_KQ = j_KQ_0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ]; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						                for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | 
					
					
						
						| 
							 | 
						                    sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps]; | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						            const int i_KQ = i_KQ_0 + threadIdx.x; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { | 
					
					
						
						| 
							 | 
						                const int j_KQ = j_KQ_0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if (use_logit_softcap) { | 
					
					
						
						| 
							 | 
						                    sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        __syncthreads(); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
					
					
						
						| 
							 | 
						            const int j = j0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); | 
					
					
						
						| 
							 | 
						            const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]); | 
					
					
						
						| 
							 | 
						            kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            float kqsum_add = 0.0f; | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						                const int i = i0 + threadIdx.x; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps]; | 
					
					
						
						| 
							 | 
						                const float val = expf(diff); | 
					
					
						
						| 
							 | 
						                kqsum_add += val; | 
					
					
						
						| 
							 | 
						                KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						                VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale; | 
					
					
						
						| 
							 | 
						                VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        __syncthreads(); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) { | 
					
					
						
						| 
							 | 
						            const int k = k0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						                const int i = i0 + threadIdx.x; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                KV_tmp2[k*(D/2) + i].x =  __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); | 
					
					
						
						| 
							 | 
						                KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        __syncthreads(); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) { | 
					
					
						
						| 
							 | 
						            float2 V_k[(D/2)/WARP_SIZE]; | 
					
					
						
						| 
							 | 
						            float  KQ_k[ncols/nwarps]; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						                const int i = i0 + threadIdx.x; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i]; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
					
					
						
						| 
							 | 
						                const int j = j0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k]; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						                for (int j0 = 0; j0 < ncols; j0 += nwarps) { | 
					
					
						
						| 
							 | 
						                    VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps]; | 
					
					
						
						| 
							 | 
						                    VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps]; | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        __syncthreads(); | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						    for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { | 
					
					
						
						| 
							 | 
						        const int j_VKQ = j_VKQ_0 + threadIdx.y; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (ic0 + j_VKQ >= ne01) { | 
					
					
						
						| 
							 | 
						            return; | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        float kqsum_j = kqsum[j_VKQ_0/nwarps]; | 
					
					
						
						| 
							 | 
						        kqsum_j = warp_reduce_sum(kqsum_j); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						#pragma unroll | 
					
					
						
						| 
							 | 
						        for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { | 
					
					
						
						| 
							 | 
						            const int i0 = i00 + 2*threadIdx.x; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)]; | 
					
					
						
						| 
							 | 
						            if (parallel_blocks == 1) { | 
					
					
						
						| 
							 | 
						                dst_val.x /= kqsum_j; | 
					
					
						
						| 
							 | 
						                dst_val.y /= kqsum_j; | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; | 
					
					
						
						| 
							 | 
						            dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x; | 
					
					
						
						| 
							 | 
						            dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y; | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (parallel_blocks != 1 && threadIdx.x == 0) { | 
					
					
						
						| 
							 | 
						            dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						template <int cols_per_block, int parallel_blocks, bool use_logit_softcap> | 
					
					
						
						| 
							 | 
						void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | 
					
					
						
						| 
							 | 
						    const ggml_tensor * Q = dst->src[0]; | 
					
					
						
						| 
							 | 
						    switch (Q->ne[0]) { | 
					
					
						
						| 
							 | 
						        case  64: { | 
					
					
						
						| 
							 | 
						            constexpr int      D = 64; | 
					
					
						
						| 
							 | 
						            constexpr int nwarps = 8; | 
					
					
						
						| 
							 | 
						            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>; | 
					
					
						
						| 
							 | 
						            launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); | 
					
					
						
						| 
							 | 
						        } break; | 
					
					
						
						| 
							 | 
						        case 128: { | 
					
					
						
						| 
							 | 
						            constexpr int      D = 128; | 
					
					
						
						| 
							 | 
						            constexpr int nwarps = 8; | 
					
					
						
						| 
							 | 
						            fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>; | 
					
					
						
						| 
							 | 
						            launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); | 
					
					
						
						| 
							 | 
						        } break; | 
					
					
						
						| 
							 | 
						        default: { | 
					
					
						
						| 
							 | 
						            GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128."); | 
					
					
						
						| 
							 | 
						        } break; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | 
					
					
						
						| 
							 | 
						    const ggml_tensor * KQV = dst; | 
					
					
						
						| 
							 | 
						    const ggml_tensor * Q = dst->src[0]; | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    float logit_softcap; | 
					
					
						
						| 
							 | 
						    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if (Q->ne[1] <= 16) { | 
					
					
						
						| 
							 | 
						        constexpr int cols_per_block = 16; | 
					
					
						
						| 
							 | 
						        constexpr int parallel_blocks = 4; | 
					
					
						
						| 
							 | 
						        if (logit_softcap == 0.0f) { | 
					
					
						
						| 
							 | 
						            constexpr bool use_logit_softcap = false; | 
					
					
						
						| 
							 | 
						            launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | 
					
					
						
						| 
							 | 
						        } else { | 
					
					
						
						| 
							 | 
						            constexpr bool use_logit_softcap = true; | 
					
					
						
						| 
							 | 
						            launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        return; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if (Q->ne[1] <= 32) { | 
					
					
						
						| 
							 | 
						        constexpr int cols_per_block = 32; | 
					
					
						
						| 
							 | 
						        constexpr int parallel_blocks = 4; | 
					
					
						
						| 
							 | 
						        if (logit_softcap == 0.0f) { | 
					
					
						
						| 
							 | 
						            constexpr bool use_logit_softcap = false; | 
					
					
						
						| 
							 | 
						            launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | 
					
					
						
						| 
							 | 
						        } else { | 
					
					
						
						| 
							 | 
						            constexpr bool use_logit_softcap = true; | 
					
					
						
						| 
							 | 
						            launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        return; | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    constexpr int cols_per_block = 32; | 
					
					
						
						| 
							 | 
						    constexpr int parallel_blocks = 1; | 
					
					
						
						| 
							 | 
						    if (logit_softcap == 0.0f) { | 
					
					
						
						| 
							 | 
						        constexpr bool use_logit_softcap = false; | 
					
					
						
						| 
							 | 
						        launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | 
					
					
						
						| 
							 | 
						    } else { | 
					
					
						
						| 
							 | 
						        constexpr bool use_logit_softcap = true; | 
					
					
						
						| 
							 | 
						        launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst); | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 |